USGS - science for a changing world

Mineral Resources On-Line Spatial Data

Cohansey Formation

Cohansey Formation - Sand, white to yellow with local gravel and clay. Locally stained red or orange brown by iron oxides and (or) cemented into large blocks of ironstone. Unweathered clay is typically dark gray, but commonly weathers white where interbedded with thin beds of ironstone. Unit is a complex of interfingering marine and nonmarine facies. Sand is typically medium grained and moderately sorted although it ranges from fine to very coarse grained and from poorly to well sorted. Sand consists of quartz and siliceous rock fragments. Some beds are locally micaceous, and in the Lakehurst area, Ocean County, some beds have high concentrations of "black" sand (pseudorutile) that was once extensively mined. In general, the sand is crossbedded, although the style of crossbedding varies significantly with the paleoenvironment. Trough crossbedding predominates, especially in the nonmarine channel fill deposits, and the scale of the crossbeds varies from small to large. In some areas, planar bedding is well developed in sections that have abundant marine burrows (mostly the clay-lined trace fossil Ophiomorpha nodosa). Such marine-influenced beds (largely foreshore deposits) occur on the central sheet west of Asbury Park, near Adelphia, Monmouth County, north of the Lakehurst Naval Air Station, Ocean County, and at Juliustown, Burlington County (Owens and Sohl, 1969), and on the southern sheet as far north as Salem, Salem County. Gravel beds occur locally, especially in updip areas such as near New Egypt, Ocean County, in the Atlantic Highlands and in the highlands west of Barnegat, Ocean County, in the southern part of the central sheet and in mixed marine and nonmarine facies in the northeastern part of the southern sheet where gravel occurs in well-defined channels. Most of the gravel is 1.3 to 2.5 cm (0.5-1.0 in) in diameter, but pieces as long as 10 cm (4 in) are present. The gravel is composed of quartz with small amounts of black chert and quartzite. Clay commonly occurs as discrete, thin, discontinuous beds, is dark gray where unweathered, white or red where weathered. Lesser, thin laminated clay strata also are present. Locally, as near Lakehurst, thick, dark-gray, very lignitic clay was uncovered during the mining of ilmenite and is informally called the Legler lignite (Rachele, 1976). An extensive, well-preserved leaf flora was collected from a thick clay lens in a pit near Millville, Cumberland County. The leaf flora was dominated by Alangium sp., a tree no longer growing in eastern North America (J.A. Wolfe, written commun., 1992). Maximum thickness in the map area is about 60 m (197 ft); however, thickness is difficult to determine because of the irregular basal contact and extensive post-depositional erosion. There is as much as 18 m (59 ft) of relief along the basal contact. The basal contact is sharp, undulatory, and directly overlain by a thin gravel bed. The Cohansey Formation unconformably overlies the Kirkwood Formation and is found in channels cut down into the Kirkwood. Where the Kirkwood consists of sandy, light-colored sediments, the basal contact of the Cohansey is drawn below crossbedded sediments. Where the Kirkwood consists of dark-colored silty beds, the basal contact is drawn between light-colored Cohansey sediments and the underlying dark-colored sediments. The Cohansey was markedly thinned because of erosion prior to deposition of overlying units in the western and southern parts of the southern sheet (Owens and Minard, 1975). The unit has been extensively eroded and stripped from large areas of the New Jersey Coastal Plain, particularly in the central sheet where outliers are common. In spite of its widespread nature, the Cohansey is poorly exposed because of its loose sandy composition, which causes it to erode easily (Newell and others, in press). Because of this same sandy nature, the Cohansey has been widely mined for sand, and manmade exposures are common in many areas. The age of the Cohansey is controversial because no calcareous microfauna or macrofauna have been found in this formation. The best indication of age comes from pollen and spores obtained from dark carbonaceous clay. Rachele (1976) analyzed the microflora from the Legler site and noted that the Cohansey had a rich and varied assemblage including several genera labeled "exotics" which no longer occur in the northeastern United States: Engelhardia, Pterocarya, Podocarpus, and Cyathea. Greller and Rachele (1984) estimated a middle Miocene age. Ager's (in Owens and others, 1988) analysis of the Cohansey from a corehole at Mays Landing also suggests a middle Miocene (Serravallian) age.
StateNew Jersey
NameCohansey Formation
Geologic ageMiddle Miocene, Serravallian
Original map labelTch
Primary rock typesand
Secondary rock typegravel
Other rock typesclay or mud; coarse-grained mixed clastic
Lithologic constituents
Major
Sedimentary > Clastic > Mixed-clastic (Bed)Locally stained red or orange brown by iron oxides and (or) cemented into large blocks of ironstone.
Unconsolidated > Coarse-detrital > Sand (Bed)Sand, white to yellow with local gravel and clay. Sand is typically medium grained and moderately sorted although it ranges from fine to very coarse grained and from poorly to well sorted. Sand consists of quartz and siliceous rock fragments. Some beds are locally micaceous, and in the Lakehurst area, Ocean County, some beds have high concentrations of "black" sand (pseudorutile) that was once extensively mined. In general, the sand is crossbedded, although the style of crossbedding varies significantly with the paleoenvironment.
Minor
Unconsolidated > Fine-detrital > Clay (Bed)Clay commonly occurs as discrete, thin, discontinuous beds, is dark gray where unweathered, white or red where weathered. Lesser, thin laminated clay strata also are present. Locally, as near Lakehurst, thick, dark-gray, very lignitic clay was uncovered during the mining of ilmenite and is informally called the Legler lignite (Rachele, 1976).
Unconsolidated > Coarse-detrital > Gravel (Bed)Gravel beds occur locally, especially in updip areas such as near New Egypt, Ocean County, in the Atlantic Highlands and in the highlands west of Barnegat, Ocean County, in the southern part of the central sheet and in mixed marine and nonmarine facies in the northeastern part of the southern sheet where gravel occurs in well-defined channels. Most of the gravel is 1.3 to 2.5 cm (0.5-1.0 in) in diameter, but pieces as long as 10 cm (4 in) are present. The gravel is composed of quartz with small amounts of black chert and quartzite.
Map references
Dalton, R. F., Herman, G. C., Monteverde, D. H., Pristas, R. S., Sugarman, P. J., Volkert, R. A., 1999, New Jersey Department Of Environmental Protection, Bedrock Geology and Topographic Base Maps of New Jersey: New Jersey Geological Survey CD Series CD 00-1; ARC/INFO (v. 7.1) export file: geology.e00, scale 1:100,000, unit description files: cslegend.pdf and nlegend.pdf, metadata: metast.pdf.
Unit references
Dalton, R. F., Herman, G. C., Monteverde, D. H., Pristas, R. S., Sugarman, P. J., Volkert, R. A., 1999, New Jersey Department Of Environmental Protection, Bedrock Geology and Topographic Base Maps of New Jersey: New Jersey Geological Survey CD Series CD 00-1; ARC/INFO (v. 7.1) export file: geology.e00, scale 1:100,000, unit description files: cslegend.pdf and nlegend.pdf, metadata: metast.pdf.
Owens, James P., Sugarman, Peter J., Sohl, Norman F., Parker, Ronald A., Houghton, Hugh F., Volkert, Richard A., Drake, Avery A., Jr., and Orndorff, Randall C., 1998, Bedrock Geologic Map of Central and Southern New Jersey: U.S. Geological Survey Miscellaneous Investigations Series Map I-2540-B, scale 1 to 100,000, 8 cross sections, 4 sheets, each size 58x41.
Owens, J.P., and Sohl, N.F., 1969, Shelf and deltaic paleoenvironments in the Cretaceous-Tertiary formations of the New Jersey Coastal Plain, Field Trip 2, in Subitzky, Seymour, ed., Geology of selected areas in New Jersey and eastern Pennsylvania and guidebook of excursions: New Brunswick, N.J., Rutgers University Press, p. 235-278
Owens, J.P., Bybell, L.M., Paulachok, Gary, Ager, T.A., Gonzalez, V.M., and Sugarman, P.J., 1988, Stratigraphy of the Tertiary sediments in a 945-foot-deep corehole near Mays Landing in the southeastern New Jersey Coastal Plain: U.S. Geological Survey Professional Paper 1484, 39 p.
Rachele, L.D., 1976, Palynology of the Legler lignite; A deposit in the Tertiary Cohansey Formation of New Jersey, U.S.A.: Review of Paleobotany and Palynology, v. 22, p. 225-252.
Owens, J.P., and Minard, J.P., 1975, Geologic map of the surficial deposits in the Trenton area, New Jersey and Pennsylvania: U.S. Geological Survey Miscellaneous Investigations Series Map I-884, scale 1:48,000.
Greller, A.M., and Rachele, L.D., 1984, Climatic limits of exotic genera in the Legler palynoflora, Miocene, New Jersey, U.S.A.: Review of Paleobotany and Palynology, v. 40, no. 3, p. 149-163.
Newell, W.L., Powars, D.S., Stanford, Scott, Owens, J.P., and Stone, B.D., in press, Surficial geologic map of central and southern New Jersey: U.S. Geological Survey Miscellaneous Investigations Series Map I-2540-D, scale 1:100,000.

Show this information as [XML] - [JSON]

AccessibilityFOIAPrivacyPolicies and Notices

Take Pride in America logoUSA.gov logoU.S. Department of the Interior | U.S. Geological Survey
URL: http://mrdata.usgs.gov/geology/state/sgmc-unit.php?unit=NJTch;1
Page Contact Information: Peter Schweitzer