Geologic units in Columbia county, Florida

Undifferentiated sediments (Pleistocene/Holocene) at surface, covers 33 % of this area

Undifferentiated Quaternary Sediments - Much of Florida's surface is covered by a varying thickness of undifferentiated sediments consisting of siliciclastics, organics and freshwater carbonates. Where these sediments exceed 20 feet (6.1 meters) thick, they were mapped as discrete units. In an effort to subdivide the undifferentiated sediments, those sediments occurring in flood plains were mapped as alluvial and flood plain deposits (Qal). Sediments showing surficial expression of beach ridges and dunes were mapped separately (Qbd) as were the sediments composing Trail Ridge (Qtr). Terrace sands were not mapped (refer to Healy [1975] for a discussion of the terraces in Florida). The subdivisions of the Undifferentiated Quaternary Sediments (Qu) are not lithostratigraphic units but are utilized in order to facilitate a better understanding of the State's geology. The siliciclastics are light gray, tan, brown to black, unconsolidated to poorly consolidated, clean to clayey, silty, unfossiliferous, variably organic-bearing sands to blue green to olive green, poorly to moderately consolidated, sandy, silty clays. Gravel is occasionally present in the panhandle. Organics occur as plant debris, roots, disseminated organic matrix and beds of peat. Freshwater carbonates, often referred to as marls in the literature, are scattered over much of the State. In southern Florida, freshwater carbonates are nearly ubiquitous in the Everglades. These sediments are buff colored to tan, unconsolidated to poorly consolidated, fossiliferous carbonate muds. Sand, silt and clay may be present in limited quantities. These carbonates often contain organics. The dominant fossils in the freshwater carbonates are mollusks.

Hawthorn Group, Statenville Formation (Miocene) at surface, covers 30 % of this area

The Statenville Formation occurs at or near the surface in a limited area of Hamilton, Columbia and Baker Counties on the northeastern flank of the Ocala Platform. The formation consists of interbedded sands, clays and dolostones with common to very abundant phosphate grains. The sands predominate and are light gray to light olive gray, poorly indurated, phosphatic, fine to coarse grained with scattered gravel and with minor occurrences of fossils. Clays are yellowish gray to olive gray, poorly consolidated, variably sandy and phosphatic, and variably dolomitic. The dolostones, which occur as thin beds, are yellowish gray to light orange, poorly to well indurated, sandy, clayey and phosphatic with scattered mollusk molds and casts. Phosphate occurs in the Statenville Formation in economically important amounts. Silicified fossils and opalized claystones are found in the Statenville Formation. Permeability of these sediments is generally low, forming part of the intermediate confining unit/aquifer system.

Undifferentiated sediments (Pliocene/Pleistocene) at surface, covers 28 % of this area

Undifferentiated Tertiary-Quaternary Sediments - These sediments are siliciclastics that are separated from undifferentiated Quaternary sediments solely on the basis of elevation. Based on the suggestion that the Pleistocene sea levels reached a maximum of approximately 100 feet (30 meters) msl (Colquhoun, 1969), these sediments, which occur above 100 feet (30 meters) msl, are predominantly older than Pleistocene but contain some sediments reworked during the Pleistocene. This unit may include fluvial and aeolian deposits. The undifferentiated Tertiary-Quaternary sediments occur in a band extending from the Georgia-Florida state line in Baker and Columbia Counties southward to Alachua County. These sediments are gray to blue green, unconsolidated to poorly consolidated, fine to coarse grained, clean to clayey, unfossiliferous sands, sandy clays and clays. Organic debris and disseminated organics are present in these sediments. The undifferentiated Tertiary-Quaternary sediments are part of the surficial aquifer system.

Hawthorn Group, Coosawhatchie Formation (Miocene) at surface, covers 7 % of this area

The Coosawhatchie Formation is exposed or lies beneath a thin overburden on the eastern flank of the Ocala Platform from southern Columbia County to southern Marion County. Within the outcrop region, the Coosawhatchie Formation varies from a light gray to olive gray, poorly consolidated, variably clayey and phosphatic sand with few fossils, to an olive gray, poorly to moderately consolidated, slightly sandy, silty clay with few to no fossils. Occasionally the sands will contain a dolomitic component and, rarely, the dominant lithology will be dolostone or limestone. Silicified nodules are often present in the Coosawhatchie Formation sediments in the outcrop region. The sediment may contain 20 percent or more phosphate (Scott, 1988). Permeability of the Coosawhatchie sediments is generally low, forming part of the intermediate confining unit/aquifer system.

Ocala Limestone (Eocene) at surface, covers 3 % of this area

Dall and Harris (1892) referred to the limestones exposed near Ocala, Marion County, in central peninsular Florida as the Ocala Limestone. Puri (1953, 1957) elevated the Ocala Limestone to group status recognizing its component formations on the basis of foraminiferal faunas (biozones). Scott (1991) reduced the Ocala Group to formational status in accordance with the North American Stratigraphic Code (North American Commission on Stratigraphic Nomenclature, 1983). The Ocala Limestone consists of nearly pure limestones and occasional dolostones. It can be subdivided into lower and upper facies on the basis of lithology. The lower member is composed of a white to cream-colored, fine to medium grained, poorly to moderately indurated, very fossiliferous limestone (grainstone and packstone). The lower facies may not be present throughout the areal extent of the Ocala Limestone and may be partially to completely dolomitized in some regions (Miller, 1986). The upper facies is a white, poorly to well indurated, poorly sorted, very fossiliferous limestone (grainstone, packstone and wackestone). Silicified limestone (chert) is common in the upper facies. Fossils present in the Ocala Limestone include abundant large and smaller foraminifers, echinoids, bryozoans and mollusks. The large foraminifera Lepidocyclina sp. is abundant in the upper facies and extremely limited in the lower facies. The presence of these large foraminifers in the upper facies is quite distinctive. The Ocala Limestone is at or near the surface within the Ocala Karst District in the westcentral to northwestern peninsula and within the Dougherty Plain District in the north-central panhandle (Scott, in preparation). In these areas, the Ocala Limestone exhibits extensive karstification. These karst features often have tens of feet (meters) of relief, dramatically influencing the topography of the Ocala Karst District and the Dougherty Plain District (Scott, in preparation). Numerous disappearing streams and springs occur within these areas. The permeable, highly transmissive carbonates of the Ocala Limestone form an important part of the FAS. It is one of the most permeable rock units in the FAS (Miller, 1986).

Beach ridge and dune (Pleistocene/Holocene) at surface, covers 0.3 % of this area

Undifferentiated Quaternary Sediments - Much of Florida's surface is covered by a varying thickness of undifferentiated sediments consisting of siliciclastics, organics and freshwater carbonates. Where these sediments exceed 20 feet (6.1 meters) thick, they were mapped as discrete units. In an effort to subdivide the undifferentiated sediments, those sediments occurring in flood plains were mapped as alluvial and flood plain deposits (Qal). Sediments showing surficial expression of beach ridges and dunes were mapped separately (Qbd) as were the sediments composing Trail Ridge (Qtr). Terrace sands were not mapped (refer to Healy [1975] for a discussion of the terraces in Florida). The subdivisions of the Undifferentiated Quaternary Sediments (Qu) are not lithostratigraphic units but are utilized in order to facilitate a better understanding of the State's geology. The siliciclastics are light gray, tan, brown to black, unconsolidated to poorly consolidated, clean to clayey, silty, unfossiliferous, variably organic-bearing sands to blue green to olive green, poorly to moderately consolidated, sandy, silty clays. Gravel is occasionally present in the panhandle. Organics occur as plant debris, roots, disseminated organic matrix and beds of peat. Freshwater carbonates, often referred to as marls in the literature, are scattered over much of the State. In southern Florida, freshwater carbonates are nearly ubiquitous in the Everglades. These sediments are buff colored to tan, unconsolidated to poorly consolidated, fossiliferous carbonate muds. Sand, silt and clay may be present in limited quantities. These carbonates often contain organics. The dominant fossils in the freshwater carbonates are mollusks.

Suwannee Limestone (Oligocene) at surface, covers < 0.1 % of this area

Peninsular Lower Oligocene carbonates crop out on the northwestern, northeastern and southwestern flanks of the Ocala Platform. The Suwannee Limestone is absent from the eastern side of the Ocala Platform due to erosion, nondeposition or both, an area referred to as Orange Island (Bryan, 1991). The Suwannee Limestone, originally named by Cooke and Mansfield (1936), consists of a white to cream, poorly to well indurated, fossiliferous, vuggy to moldic limestone (grainstone and packstone). The dolomitized parts of the Suwannee Limestone are gray, tan, light brown to moderate brown, moderately to well indurated, finely to coarsely crystalline, dolostone with limited occurrences of fossiliferous (molds and casts) beds. Silicified limestone is common in Suwannee Limestone. Fossils present in the Suwannee Limestone include mollusks, foraminifers, corals and echinoids.