Geologic units in Dixie county, Florida

Ocala Limestone (Eocene) at surface, covers 95 % of this area

Dall and Harris (1892) referred to the limestones exposed near Ocala, Marion County, in central peninsular Florida as the Ocala Limestone. Puri (1953, 1957) elevated the Ocala Limestone to group status recognizing its component formations on the basis of foraminiferal faunas (biozones). Scott (1991) reduced the Ocala Group to formational status in accordance with the North American Stratigraphic Code (North American Commission on Stratigraphic Nomenclature, 1983). The Ocala Limestone consists of nearly pure limestones and occasional dolostones. It can be subdivided into lower and upper facies on the basis of lithology. The lower member is composed of a white to cream-colored, fine to medium grained, poorly to moderately indurated, very fossiliferous limestone (grainstone and packstone). The lower facies may not be present throughout the areal extent of the Ocala Limestone and may be partially to completely dolomitized in some regions (Miller, 1986). The upper facies is a white, poorly to well indurated, poorly sorted, very fossiliferous limestone (grainstone, packstone and wackestone). Silicified limestone (chert) is common in the upper facies. Fossils present in the Ocala Limestone include abundant large and smaller foraminifers, echinoids, bryozoans and mollusks. The large foraminifera Lepidocyclina sp. is abundant in the upper facies and extremely limited in the lower facies. The presence of these large foraminifers in the upper facies is quite distinctive. The Ocala Limestone is at or near the surface within the Ocala Karst District in the westcentral to northwestern peninsula and within the Dougherty Plain District in the north-central panhandle (Scott, in preparation). In these areas, the Ocala Limestone exhibits extensive karstification. These karst features often have tens of feet (meters) of relief, dramatically influencing the topography of the Ocala Karst District and the Dougherty Plain District (Scott, in preparation). Numerous disappearing streams and springs occur within these areas. The permeable, highly transmissive carbonates of the Ocala Limestone form an important part of the FAS. It is one of the most permeable rock units in the FAS (Miller, 1986).

Undifferentiated sediments (Pleistocene/Holocene) at surface, covers 5 % of this area

Undifferentiated Quaternary Sediments - Much of Florida's surface is covered by a varying thickness of undifferentiated sediments consisting of siliciclastics, organics and freshwater carbonates. Where these sediments exceed 20 feet (6.1 meters) thick, they were mapped as discrete units. In an effort to subdivide the undifferentiated sediments, those sediments occurring in flood plains were mapped as alluvial and flood plain deposits (Qal). Sediments showing surficial expression of beach ridges and dunes were mapped separately (Qbd) as were the sediments composing Trail Ridge (Qtr). Terrace sands were not mapped (refer to Healy [1975] for a discussion of the terraces in Florida). The subdivisions of the Undifferentiated Quaternary Sediments (Qu) are not lithostratigraphic units but are utilized in order to facilitate a better understanding of the State's geology. The siliciclastics are light gray, tan, brown to black, unconsolidated to poorly consolidated, clean to clayey, silty, unfossiliferous, variably organic-bearing sands to blue green to olive green, poorly to moderately consolidated, sandy, silty clays. Gravel is occasionally present in the panhandle. Organics occur as plant debris, roots, disseminated organic matrix and beds of peat. Freshwater carbonates, often referred to as marls in the literature, are scattered over much of the State. In southern Florida, freshwater carbonates are nearly ubiquitous in the Everglades. These sediments are buff colored to tan, unconsolidated to poorly consolidated, fossiliferous carbonate muds. Sand, silt and clay may be present in limited quantities. These carbonates often contain organics. The dominant fossils in the freshwater carbonates are mollusks.

Holocene sediments (Holocene) at surface, covers 0.6 % of this area

The Holocene sediments in Florida occur near the present coastline at elevations generally less than 5 feet (1.5 meters). The sediments include quartz sands, carbonate sands and muds, and organics.