Geologic units in Levy county, Florida

Ocala Limestone (Eocene) at surface, covers 64 % of this area

Dall and Harris (1892) referred to the limestones exposed near Ocala, Marion County, in central peninsular Florida as the Ocala Limestone. Puri (1953, 1957) elevated the Ocala Limestone to group status recognizing its component formations on the basis of foraminiferal faunas (biozones). Scott (1991) reduced the Ocala Group to formational status in accordance with the North American Stratigraphic Code (North American Commission on Stratigraphic Nomenclature, 1983). The Ocala Limestone consists of nearly pure limestones and occasional dolostones. It can be subdivided into lower and upper facies on the basis of lithology. The lower member is composed of a white to cream-colored, fine to medium grained, poorly to moderately indurated, very fossiliferous limestone (grainstone and packstone). The lower facies may not be present throughout the areal extent of the Ocala Limestone and may be partially to completely dolomitized in some regions (Miller, 1986). The upper facies is a white, poorly to well indurated, poorly sorted, very fossiliferous limestone (grainstone, packstone and wackestone). Silicified limestone (chert) is common in the upper facies. Fossils present in the Ocala Limestone include abundant large and smaller foraminifers, echinoids, bryozoans and mollusks. The large foraminifera Lepidocyclina sp. is abundant in the upper facies and extremely limited in the lower facies. The presence of these large foraminifers in the upper facies is quite distinctive. The Ocala Limestone is at or near the surface within the Ocala Karst District in the westcentral to northwestern peninsula and within the Dougherty Plain District in the north-central panhandle (Scott, in preparation). In these areas, the Ocala Limestone exhibits extensive karstification. These karst features often have tens of feet (meters) of relief, dramatically influencing the topography of the Ocala Karst District and the Dougherty Plain District (Scott, in preparation). Numerous disappearing streams and springs occur within these areas. The permeable, highly transmissive carbonates of the Ocala Limestone form an important part of the FAS. It is one of the most permeable rock units in the FAS (Miller, 1986).

Undifferentiated sediments (Pleistocene/Holocene) at surface, covers 17 % of this area

Undifferentiated Quaternary Sediments - Much of Florida's surface is covered by a varying thickness of undifferentiated sediments consisting of siliciclastics, organics and freshwater carbonates. Where these sediments exceed 20 feet (6.1 meters) thick, they were mapped as discrete units. In an effort to subdivide the undifferentiated sediments, those sediments occurring in flood plains were mapped as alluvial and flood plain deposits (Qal). Sediments showing surficial expression of beach ridges and dunes were mapped separately (Qbd) as were the sediments composing Trail Ridge (Qtr). Terrace sands were not mapped (refer to Healy [1975] for a discussion of the terraces in Florida). The subdivisions of the Undifferentiated Quaternary Sediments (Qu) are not lithostratigraphic units but are utilized in order to facilitate a better understanding of the State's geology. The siliciclastics are light gray, tan, brown to black, unconsolidated to poorly consolidated, clean to clayey, silty, unfossiliferous, variably organic-bearing sands to blue green to olive green, poorly to moderately consolidated, sandy, silty clays. Gravel is occasionally present in the panhandle. Organics occur as plant debris, roots, disseminated organic matrix and beds of peat. Freshwater carbonates, often referred to as marls in the literature, are scattered over much of the State. In southern Florida, freshwater carbonates are nearly ubiquitous in the Everglades. These sediments are buff colored to tan, unconsolidated to poorly consolidated, fossiliferous carbonate muds. Sand, silt and clay may be present in limited quantities. These carbonates often contain organics. The dominant fossils in the freshwater carbonates are mollusks.

Hawthorn Group, Undifferentiated (Miocene) at surface, covers 13 % of this area

The undifferentiated Hawthorn Group occurs at or near the surface near the southern flank of the Ocala Platform from Gilchrist County southward to Pasco County with isolated occurrences in Pinellas County. Correlation of these sediments to the formations of the Hawthorn Group exposed to the east and in the subsurface is uncertain. There is little to no phosphate present in these sediments and fossils are rare. Ages have not been documented but stratigraphic position suggests inclusion in the Hawthorn Group. These sediments may be residual from the weathering and erosion of the Hawthorn Group. The Hawthorn Group sediments on the Brooksville Ridge are deeply weathered and in some outcrops look like Cypresshead Formation siliciclastics. The undifferentiated Hawthorn Group sediments are light olive gray and blue gray in unweathered sections to reddish brown in deeply weathered sections, poorly to moderately consolidated, clayey sands to silty clays and relatively pure clays. These sediments are part of the intermediate confining unit/aquifer system and provide an effective aquitard for the FAS, except where perforated by karst features. Hard-rock phosphate deposits are associated with the undifferentiated Hawthorn Group sediments on the eastern flank of the Brooksville Ridge. The hard rock phosphate deposits were formed by the dissolution of phosphate in the Hawthorn sediments and redeposition in karst features.

Avon Park Formation (Eocene) at surface, covers 6 % of this area

Middle Eocene carbonate sediments of peninsular Florida, as originally described by Applin and Applin (1944), were subdivided, in ascending order, into the Lake City Limestone and the Avon Park Limestone. Miller (1986) recommended combining the Lake City Limestone with the Avon Park Limestone and, due to the common occurrence of dolostone, referred to the unit as the Avon Park Formation. Carbonates of the Avon Park Formation are the oldest sediments exposed in the state. The Avon Park Formation crops out in a limited area in west-central peninsular Florida in Levy and Citrus Counties on the crest of the Ocala Platform. The Avon Park Formation consists of cream to light-brown or tan, poorly indurated to well indurated, variably fossiliferous, limestone (grainstone, packstone and wackestone, with rare mudstone). These limestones are interbedded with tan to brown, very poorly indurated to well indurated, very fine to medium crystalline, fossiliferous (molds and casts), vuggy dolostones. The fossils present include mollusks, foraminifers, echinoids, algae and carbonized plant remains. Molds and casts of gypsum crystals occur locally. The Avon Park Formation is part of the Floridan aquifer system (FAS). Parts of the Avon Park Formation comprise important, subregional confining units within the FAS (Miller, 1986).

Hawthorn Group, Coosawhatchie Formation (Miocene) at surface, covers 0.2 % of this area

The Coosawhatchie Formation is exposed or lies beneath a thin overburden on the eastern flank of the Ocala Platform from southern Columbia County to southern Marion County. Within the outcrop region, the Coosawhatchie Formation varies from a light gray to olive gray, poorly consolidated, variably clayey and phosphatic sand with few fossils, to an olive gray, poorly to moderately consolidated, slightly sandy, silty clay with few to no fossils. Occasionally the sands will contain a dolomitic component and, rarely, the dominant lithology will be dolostone or limestone. Silicified nodules are often present in the Coosawhatchie Formation sediments in the outcrop region. The sediment may contain 20 percent or more phosphate (Scott, 1988). Permeability of the Coosawhatchie sediments is generally low, forming part of the intermediate confining unit/aquifer system.

Holocene sediments (Holocene) at surface, covers < 0.1 % of this area

The Holocene sediments in Florida occur near the present coastline at elevations generally less than 5 feet (1.5 meters). The sediments include quartz sands, carbonate sands and muds, and organics.