Geologic units in Manatee county, Florida

Undifferentiated sediments (Pleistocene/Holocene) at surface, covers 57 % of this area

Undifferentiated Quaternary Sediments - Much of Florida's surface is covered by a varying thickness of undifferentiated sediments consisting of siliciclastics, organics and freshwater carbonates. Where these sediments exceed 20 feet (6.1 meters) thick, they were mapped as discrete units. In an effort to subdivide the undifferentiated sediments, those sediments occurring in flood plains were mapped as alluvial and flood plain deposits (Qal). Sediments showing surficial expression of beach ridges and dunes were mapped separately (Qbd) as were the sediments composing Trail Ridge (Qtr). Terrace sands were not mapped (refer to Healy [1975] for a discussion of the terraces in Florida). The subdivisions of the Undifferentiated Quaternary Sediments (Qu) are not lithostratigraphic units but are utilized in order to facilitate a better understanding of the State's geology. The siliciclastics are light gray, tan, brown to black, unconsolidated to poorly consolidated, clean to clayey, silty, unfossiliferous, variably organic-bearing sands to blue green to olive green, poorly to moderately consolidated, sandy, silty clays. Gravel is occasionally present in the panhandle. Organics occur as plant debris, roots, disseminated organic matrix and beds of peat. Freshwater carbonates, often referred to as marls in the literature, are scattered over much of the State. In southern Florida, freshwater carbonates are nearly ubiquitous in the Everglades. These sediments are buff colored to tan, unconsolidated to poorly consolidated, fossiliferous carbonate muds. Sand, silt and clay may be present in limited quantities. These carbonates often contain organics. The dominant fossils in the freshwater carbonates are mollusks.

Hawthorn Group, Peace River Formation (Miocene/Pliocene) at surface, covers 23 % of this area

The Peace River Formation crops out or is beneath a thin overburden on the southern part of the Ocala Platform extending into the Okeechobee Basin. These sediments were mapped from Hillsborough County southward to Charlotte County. Within this area, the Peace River Formation is composed of interbedded sands, clays and carbonates. The sands are generally light gray to olive gray, poorly consolidated, clayey, variably dolomitic, very fine to medium grained and phosphatic. The clays are yellowish gray to olive gray, poorly to moderately consolidated, sandy, silty, phosphatic and dolomitic. The carbonates are usually dolostone in the outcrop area. The dolostones are light gray to yellowish gray, poorly to well indurated, variably sandy and clayey, and phosphatic. Opaline chert is often found in these sediments. The phosphate content of the Peace River Formation sands is frequently high enough to be economically mined. Fossil mollusks occur as reworked casts, molds, and limited original shell material. Silicified corals and wood, and vertebrate fossils are also present. The Peace River Formation is widespread in southern Florida. It is part of the intermediate confining unit/aquifer system.

Shelly sediments of Plio-Pleistocene age (Pliocene/Pleistocene) at surface, covers 12 % of this area

Tertiary-Quaternary Fossiliferous Sediments of Southern Florida - Molluskbearing sediments of southern Florida contain some of the most abundant and diverse fossil faunas in the world. The origin of these accumulations of fossil mollusks is imprecisely known (Allmon, 1992). The shell beds have attracted much attention due to the abundance and preservation of the fossils but the biostratigraphy and lithostratigraphy of the units has not been well defined (Scott, 1992). Scott and Wingard (1995) discussed the problems associated with biostratigraphy and lithostratigraphy of the Plio-Pleistocene in southern Florida. These "formations" are biostratigraphic units. The "formations" previously recognized within the latest Tertiary-Quaternary section of southern Florida include the latest Pliocene - early Pleistocene Caloosahatchee Formation, the early Pleistocene Bermont formation (informal) and the late Pleistocene Fort Thompson Formation. This section consists of fossiliferous sands and carbonates. The identification of these units is problematic unless the significant molluscan species are recognized. Often exposures are not extensive enough to facilitate the collection of representative faunal samples to properly discern the biostratigraphic identification of the formation. In an attempt to alleviate the inherent problems in the biostratigraphic recognition of lithostratigraphic units, Scott (1992) suggested grouping the latest Pliocene through late Pleistocene Caloosahatchee, Bermont and Fort Thompson Formations in to a single lithostratigraphic entity, the Okeechobee formation (informal). In mapping the shelly sands and carbonates, a generalized grouping as Tertiary-Quaternary shell units (TQsu) was utilized. This is equivalent to the informal Okeechobee formation. The distribution of the Caloosahatchee and Fort Thompson Formation are shown on previous geologic maps by Cooke (1945), Vernon and Puri (1964) and Brooks (1982). The Nashua Formation occurs within the Pliocene - Pleistocene in northern Florida. However, it crops out or is near the surface is an area too small to be shown on a map of this scale. Lithologically these sediments are complex, varying from unconsolidated, variably calcareous and fossiliferous quartz sands to well indurated, sandy, fossiliferous limestones (both marine and freshwater). Clayey sands and sandy clays are present. These sediments form part of the surficial aquifer system

Hawthorn Group, Arcadia Formation (Oligocene/Miocene) at surface, covers 6 % of this area

The undifferentiated Arcadia Formation and the Tampa Member crop out on the southwestern flank of the Ocala Platform from Pasco County southward to Sarasota County. Although ages of the outcropping sediments have not been accurately determined, stratigraphic position suggests that the Upper Oligocene parts of the Arcadia Formation and Tampa Member are exposed in this region, particularly from Hillsborough County northward to Pasco County. The Arcadia Formation, named by Scott (1988), is predominantly a carbonate unit with a variable siliciclastic component, including thin beds of siliciclastics. Within the outcrop area, the Arcadia Formation, with the exception of the Tampa Member, is composed of yellowish gray to light olive gray to light brown, micro to finely crystalline, variably sandy, clayey, and phosphatic, fossiliferous limestones and dolostones. Thin beds of sand and clay are common. The sands are yellowish gray, very fine to medium grained, poorly to moderately indurated, clayey, dolomitic and phosphatic. The clays are yellowish gray to light olive gray, poorly to moderately indurated, sandy, silty, phosphatic and dolomitic. Molds and casts of mollusks are common in the dolostones. Silicified carbonates and opalized claystone are found in the Arcadia Formation.

Holocene sediments (Holocene) at surface, covers 1.0 % of this area

The Holocene sediments in Florida occur near the present coastline at elevations generally less than 5 feet (1.5 meters). The sediments include quartz sands, carbonate sands and muds, and organics.

Hawthorn Group, Peace River Formation, Bone Valley Member (Miocene/Pliocene) at surface, covers 0.8 % of this area

The Bone Valley Member (originally the Bone Valley Formation of Matson and Clapp, 1909), Peace River Formation occurs in a limited area on the southern part of the Ocala Platform in Hillsborough, Polk and Hardee Counties. Throughout its extent, the Bone Valley Member is a clastic unit consisting of sand-sized and larger phosphate grains in a matrix of quartz sand, silt and clay. The lithology is highly variable, ranging from sandy, silty, phosphatic clays and relatively pure clays to clayey, phosphatic sands to sandy, clayey phosphorites (Webb and Crissinger, 1983). In general, consolidation is poor and colors range from white, light brown and yellowish gray to olive gray and blue green. Mollusks are found as reworked, often phosphatized casts. Vertebrate fossils occur in many of the beds within the Bone Valley Member. Shark's teeth are often abundant. Silicified corals and wood are occasionally present as well. The Bone Valley Member is an extremely important, unique phosphate deposit and has provided much of the phosphate production in the United States during the twentieth century. Mining of phosphate in the outcrop area began in 1888 (Cathcart, 1985) and continues to the present.