Geologic units in Owyhee county, Idaho

Additional scientific data in this geographic area

Basalt (Pliocene and Miocene). (Pliocene and Miocene) at surface, covers 34 % of this area

Flows and cinder cones of olivine tholeiite basalt, and shallow basalt intrusives (~15-3 Ma); includes basalt in Owyhee County and southwest of Twin Falls, basalt of Weiser (basalt to andesite), basalt of Cuddy Mountain (alkali basalt and picro-basalt) north of Cambridge, basalt in Mount Bennett Hills north of Gooding, andesite at Square Mountain near Magic Reservoir, and Cub River diabase sill east of Preston. Includes gabbro at depth in cross section D-D’-D”. (Quaternary to Eocene Continental Volcanic and Intrusive Rocks).

Rhyolite (Miocene). (Miocene) at surface, covers 34 % of this area

Rhyolite tuffs and flows (14-8 Ma); includes Juniper Mountain volcanic center, tuff of Little Jacks Creek, Cougar Point Tuff, tuffs in the Mt. Bennett Hills, and Arbon Valley Tuff Member of Starlight Formation. Volcanic sources include Owyhee-Humboldt (13.8-12.0 Ma), Bruneau-Jarbidge (12.5-11.3 Ma), Twin Falls (10.0-8.6 Ma), and Picabo (10.2 Ma) volcanic centers. (Quaternary to Eocene Continental Volcanic and Intrusive Rocks).

Sedimentary rocks associated with Basin and Range extension. (Quaternary, Pliocene, and Miocene) at surface, covers 10 % of this area

Fluvial, fan, and lacustrine deposits and intercalated volcanic rocks of the Basin and Range Province (~16-2 Ma); consolidated to weakly consolidated sandstone, siltstone, arkose, conglomerate, mudstone, tuffaceous sediment, basalt, basaltic tephra, and rhyolite tuff. Includes deposits of Lake Idaho (Idaho Group) in western Snake River Plain and Salt Lake Formation deposited in Basin and Range Province of east-central Idaho. (Quaternary to Eocene Continental Sediments and Sedimentary Rocks).

Sediments and sedimentary rocks (Pleistocene and Pliocene). (Pleistocene and Pliocene) at surface, covers 6 % of this area

Older gravel, sand, and silt deposited in fans, streams, and lakes. Includes older terrace gravels and Tuana Gravel northwest of Twin Falls. (Quaternary to Eocene Continental Sediments and Sedimentary Rocks).

Sedimentary rocks associated with flood basalts. (Miocene) at surface, covers 3 % of this area

Fluvial and lacustrine deposits associated with Columbia River Basalt Group and equivalent basalts (17-8 Ma); consolidated to weakly consolidated sandstone, siltstone, arkose, conglomerate, claystone, and tuffaceous sediment; subordinate intercalated basalt and rhyolitic tuff. Includes Payette and Sucker Creek formations in southwestern Idaho, sediments associated with basalt of Weiser in western Idaho, and Latah Formation in northern Idaho. Includes sedimentary rocks of uncertain origin in southwest corner of Idaho. (Quaternary to Eocene Continental Sediments and Sedimentary Rocks).

Granodiorite and two-mica granite. (Cretaceous) at surface, covers 2 % of this area

Granodiorite and granite containing biotite, commonly with muscovite; includes bulk of Atlanta lobe (85-67 Ma) and isolated plutons in northern Idaho (107-67 Ma). (Paleocene and Cretaceous Idaho Batholith and Older Cretaceous and Jurassic Intrusive Rocks).

Older rhyolite, latite, and andesite. (Miocene) at surface, covers 2 % of this area

Older rhyolite, latite, and andesite (Miocene)—Rhyolitic domes and tuffs, and subordinate latite flows (17-14 Ma); includes rhyolites of Silver City and tuff of Flint Creek in the Owyhee Mountains and rhyolite of Timber Butte northeast of Emmett. (Quaternary to Eocene Continental Volcanic and Intrusive Rocks).

Alluvial deposits. (Quaternary) at surface, covers 2 % of this area

Deposits in valleys consisting of gravel, sand, and silt. Includes younger terrace deposits. May contain some glacial deposits and colluvium in uplands. (Quaternary Sediments).

Lake Bonneville deposits. (Pleistocene) at surface, covers 1 % of this area

Silt, clay, sand, and gravel deposited in and at margins of former Lake Bonneville (33-11 calibrated ka) and sand and gravel deposited in giant flood bars by outburst floods from the lake (17.4 calibrated ka). The 1,575-m (5,170 ft) Lake Bonneville shoreline was used to determine the maximum extent of the lake deposits. Flood deposits follow Bonneville flood path from near Downey and the Portneuf River westward along the Snake River to Lewiston. They include sand and silt deposited in slack-water areas to 740 m (2,430 ft) elevation in the Boise, Weiser, Payette, and Snake river drainages. (Quaternary Sediments).

Columbia River Basalt Group. (Miocene) at surface, covers 0.9 % of this area

Large-volume lava flows of tholeiitic basalt, basaltic andesite, and subordinate andesite in western Idaho; consists of Imnaha Basalt (17.5-16.5 Ma), Grande Ronde Basalt (16.5-15.6 Ma), Wanapum Basalt (15.6-14.5 Ma), and Saddle Mountains Basalt (14.5-6 Ma). Includes porphyritic basalt and basaltic andesite in western Owyhee County. (Quaternary to Eocene Continental Volcanic and Intrusive Rocks).

Windblown sand deposits. (Quaternary) at surface, covers 0.8 % of this area

Fine- and medium-grained sand dunes in southern Idaho; includes Bruneau and St. Anthony dune fields. (Quaternary Sediments).

Fluvial and lake sediment. (Quaternary) at surface, covers 0.8 % of this area

Largely fine-grained sediment, in part playa deposits of evaporative lakes; includes Snake River Group and Bruneau Formation in central Snake River Plain and glacial lake deposits in Bonners Ferry area of northern Idaho. Also includes travertine and tufa northeast of Bancroft and Lake Thatcher sediments in the Gem Valley south of Grace. (Quaternary Sediments).

Basalt (Pleistocene and Pliocene). (Pleistocene and Pliocene) at surface, covers 0.7 % of this area

Flows and cinder cones of olivine tholeiite basalt in and near Snake River Plain. Largely Pleistocene (<2.6 Ma) but includes flows as old as 3 Ma. Covered with 1-3 m (3-10 ft) of loess. (Quaternary to Eocene Continental Volcanic and Intrusive Rocks).

Volcanic rocks. (Oligocene) at surface, covers 0.6 % of this area

Alkali olivine basalt and trachyte of the ~26 Ma Potlatch volcanics; basalt, andesite, and rhyolite of the ~32 Ma Kamiah volcanics; and olivine basalt and andesite of the 26-31 Ma Salmon Creek volcanics southwest of Nampa. (Quaternary to Eocene Continental Volcanic and Intrusive Rocks).

Challis Volcanic Group. (Eocene) at surface, covers 0.5 % of this area

Dacite, andesite, and rhyolite tuffs and flows and subordinate basalt and latite flows; covers large area in south-central Idaho. Includes Absaroka Volcanic Group near Henrys Lake and scattered volcanic rocks in eastern and northern Idaho. (Eocene Challis Magmatic Complex and Related Sedimentary Rocks).

Challis intrusive rocks. (Eocene) at surface, covers 0.5 % of this area

Shallow roots of Challis volcanic field. Older suite of granodiorite and quartz monzodiorite and subordinate diorite, granite, and subvolcanic dacite; includes Jackson Peak, Beaver Creek, Marsh Creek, and Summit Creek stocks (49-45 Ma). Younger suite of granite and minor syenite and subvolcanic rhyolite; includes Sawtooth, Casto, Bungalow, and Lolo Hot Springs plutons (47-43 Ma). (Eocene Challis Magmatic Complex and Related Sedimentary Rocks).

Tonalite, granodiorite, and quartz diorite. (Cretaceous) at surface, covers 0.2 % of this area

Tonalite, granodiorite, and quartz diorite, typically hornblende-bearing; includes the Payette River tonalite (~90 Ma) along western border zone of the Atlanta lobe, and the ~99 Ma Croesus pyroxene-biotite quartz diorite south of Hailey. Also includes granodiorite with potassium feldspar megacrysts that is typically hornblende-bearing and foliated (~90 Ma in central Idaho and ~100 Ma in northernmost Idaho) and early mafic phases of the Bitterroot lobe (~70 Ma). (Paleocene and Cretaceous Idaho Batholith and Older Cretaceous and Jurassic Intrusive Rocks).

Plutonic rocks along the western Idaho shear zone. (Cretaceous and Jurassic) at surface, covers 0.1 % of this area

Deformed granodiorite, tonalite, and quartz diorite; includes Little Goose Creek complex northwest of McCall dominated by porphyritic granodiorite (~105 Ma) and subordinate 160-87 Ma tonalite and quartz diorite. (Paleocene and Cretaceous Idaho Batholith and Older Cretaceous and Jurassic Intrusive Rocks).

Metasedimentary rocks. (Paleozoic to Mesoproterozoic) at surface, covers < 0.1 % of this area

Quartzite, feldspathic quartzite, calc-silicate gneiss, biotite gneiss, schist, and amphibolite north and east of McCall and as pendants in the southern part of the Idaho batholith; schist, quartzite, and marble in southwestern Idaho; argillite, siltite, quartzite, carbonate bearing quartzite, dolomite, phyllite, and conglomerate of the Deer Trail Group in northwest corner of state; and quartzite, Hayden Creek diamictite, and siltite stratigraphically above(?) the Swauger Formation south of Salmon. (Metasedimentary Rocks of Uncertain Age (Neoproterozoic to Paleoproterozoic)).

Tonalite, hornblendite, and gabbro. (Jurassic) at surface, covers < 0.1 % of this area

Tonalite in upper part of House Mountain metamorphic complex southeast of Boise (~157 Ma), hornblendite and gabbro at South Mountain southwest of Boise (~160 Ma), and tonalite of Continental Mountain at the Canadian border (~168 Ma). (Paleocene and Cretaceous Idaho Batholith and Older Cretaceous and Jurassic Intrusive Rocks).

Landslide deposits. (Quaternary) at surface, covers < 0.1 % of this area

Unsorted gravel, sand, and clay of landslide origin; includes rotational and translational blocks and earth flows. (Quaternary Sediments).

Olivine basalt (Miocene to Pliocene) at surface, covers < 0.1 % of this area

Thin, commonly open-textured (diktytaxitic), subophitic to intergranular olivine basalt flows, intercalated with and grades laterally through palagonite breccia and tuff into tuffaceous sedimentary rocks (unit Ts). In places includes flows of platy olivine andesite or basaltic andesite. Several potassium-argon ages ranging from about 4 to 7 Ma indicate unit is mostly of early Pliocene and late Miocene age. Includes Shumuray Ranch Basalt and Antelope Flat Basalt of Kittleman and others (1965), Grassy Mountain Basalt of Corcoran and others (1962), Drinkwater Basalt of Bowen and others (1963), basalt formerly assigned to Danforth Formation by Piper and others (1939) (see Walker, 1979), Hayes Butte Basalt of Hampton (1964), Pliocene and upper Miocene basalt flows capping and interstratified with the Madras (or Deschutes) Formation, and basalt flows interstratified in the Dalles Formation of Newcomb (1966; 1969)

Rhyolite and dacite (Miocene to Pliocene) at surface, covers < 0.1 % of this area

Ash-flow tuff, lava flows, pumice-lapilli tuff, coarse pumicite, flow breccia, and domal complexes of rhyolitic, rhyodacitic, and dacitic composition; in places includes peralkaline rhyolite and some andesite and andesite breccia. Locally porphyritic with phenocrysts of alkali feldspar, plagioclase, and minor augite, ferro-hedenbergite, hornblende, hypersthene, or biotite. Commonly flow banded; locally glassy. Many of the ash--flow tuffs exhibit flow features and only obscure vitro-clastic textures. In places includes interlayers of silicic volcaniclastic rocks and tuffaceous sedimentary rocks. Includes rhyolite at Owyhee Dam, Jump Creek Rhyolite, and Littlefield Rhyolite, all of Kittleman and others (1965); Dooley Rhyolite Breccia of Gilluly (1937), radiometrically dated at 14.7 ñ 0.4 Ma by potassium-argon methods (Fiebelkorn and others, 1983); resurgent domal masses in McDermitt caldera area; and extensive unnamed flows and ash-flow tuffs in the central and southern part of the Owyhee Upland. Also includes isolated masses of dacitic and rhyodacitic flows, breccia, and ash-flow tuff along eastern slope of Cascade Range that are lapped by flows and sediments of the Madras (or Deschutes) Formation. Potassium-argon ages on rocks in unit from southeast Oregon range from about 13 to 16 Ma; lenses of interbedded tuffaceous sedimentary rocks locally contain a Miocene (Barstovian) vertebrate fauna

Younger silicic ash flow tuffs (Miocene) at surface, covers < 0.1 % of this area

Includes units mapped as the High Rock sequence on the Washoe North map; the Timber Mountain, Paintbrush, Crater Flat, and Belted Range Tuffs, and Indian Trail Formation (now abandoned) on the Nye South map; the Thirsty Canyon Tuff on the Nye South and Esmeralda maps; and other unnamed units. Locally it includes tuffaceous sedimentary rocks interstratified with tuffs. It is present in the northernmost part and southernmost parts of the State, and is not exposed in the central region. It corresponds to unit Tt3 on the 1978 State map, although a few rocks also mapped as Trt on the 1978 State map also are included. It is present in Clark, Churchill, Washoe, Nye, Lincoln, Lyon, Douglas, Carson, Esmeralda, Elko, Humboldt, Pershing, and Mineral Counties.

Tuffaceous sedimentary rocks, tuffs, pumicites, and silicic flows (Miocene) at surface, covers < 0.1 % of this area

Moderately well indurated lacustrine and fluvial (flood-plain) deposits of tuff, pumicite, palagonite tuff, and lesser siltstone, arkosic sandstone, and pebble and cobble conglomerate. Locally contains some lignite beds. Former glass in silicic vitroclastic debris commonly crystallized and altered to secondary silica minerals, alkali feldspar, zeolites, and clay minerals. Contains some welded and nonwelded ash-flow tuffs, and minor rhyolite flows. Widespread and abundant vertebrate fossils and minor plant fossils indicate that most of unit is of middle Miocene (Barstovian) age; parts of unit between Goose Lake and Warner Valley may include rocks of early Miocene age. Locally interlayered with and locally overlies basalt and andesite flows of unit Tmb. Overlies and locally interfingers with Picture Gorge Basalt (Thayer and Brown, 1966) and with Miocene basalt south of Prineville. Includes Mascall Formation of Merriam (1901), Sucker (Succor) Creek Formation of Corcoran and others (1962) and Kittleman and others (1967), Drip Spring Formation of Kittleman and others (1965, 1967), Trout Creek Formation of Smith (1926), and "rocks of Miocene age" of Malde and Powers (1962) in the southern Owyhee Upland province. In southeast Oregon, some of these rocks represent caldera and moat-fill deposits

Basalt (Middle to Late Miocene) at surface, covers < 0.1 % of this area

Basalt flows, flow breccia, and basaltic peperite; minor andesite flows; some interbeds of tuff and tuffaceous sedimentary rocks. Basalt is aphyric to moderately porphyritic with phenocrysts of plagioclase and olivine and exhibits both subophitic and diktytaxitic textures. Includes Picture Rock Basalt of Hampton (1964), radiometrically dated by potassium-argon methods as middle(?) and late Miocene in age (see Fiebelkorn and others, 1983), flows of Deer Butte Formation of Kittleman and others (1967), and extensive unnamed flow sequences in the Basin-Range and Owyhee Upland Provinces of southern Lake, Harney, and Malheur Counties that are younger than Steens Basalt, dated at about 15 Ma (Baksi and others, 1967) and the Owyhee Basalt, dated at about 14 Ma (Bottomley and York, 1976; see also Fiebelkorn and others, 1983), and older than 7 or 8 Ma. Partly coeval with the Saddle Mountains Basalt of the Columbia River Basalt Group (Swanson and others, 1979)

Tuffaceous sedimentary rocks and tuff (Miocene to Pliocene) at surface, covers < 0.1 % of this area

Semiconsolidated to well-consolidated mostly lacustrine tuffaceous sandstone, siltstone, mudstone, concretionary claystone, conglomerate, pumicite, diatomite, air-fall and water-deposited vitric ash, palagonitic tuff and tuff breccia, and fluvial sandstone and conglomerate. Palagonitic tuff and breccia grade laterally into altered and unaltered basalt flows of unit Tob. In places includes layers of fluvial conglomerate and, in parts of the Deschutes-Umatilla Plateau, extensive deposits of fanglomerate composed mostly of Miocene basalt debris and silt. Also includes thin, welded and nonwelded ash-flow tuffs. Vertebrate and plant fossils indicate rocks of unit are mostly of Clarendonian and Hemphillian (late Miocene and Pliocene) age. Potassium-argon ages on interbedded basalt flows and ash-flow tuffs range from about 4 to 10 Ma. Includes the Drewsey Formation of Shotwell and others (1963); sedimentary parts of the Rattlesnake Formation of Brown and Thayer (1966); an interstratified ash-flow tuff has been radiometrically dated by potassium-argon methods at about 6.6 Ma (see Fiebelkorn and others, 1983); Bully Creek Formation of Kittleman and others (1967); Dalles Formation of Newcomb (1966, 1969); Shutler Formation of Hodge (1932), McKay beds of Hogenson (1964) and Newcomb (1966) (see also Shotwell, 1956); Kern Basin Formation of Corcoran and others (1962); Rome beds of Baldwin (1976); parts of the (now obsolete) Danforth Formation of Piper and others (1939), Idaho Group of Malde and Powers (1962), Thousand Creek Beds of Merriam (1910); the Madras (or Deschutes) Formation, the "Simtustus formation" of Smith (1984), and the Yonna Formation (Newcomb, 1958). In areas west of Cascade crest, includes the Sandy River Mudstone and the Troutdale Formation of Trimble (1963) and the lower Pliocene Helvetia Formation of Schlicker and Deacon (1967)

Basalt, gravel, and tuffaceous sedimentary rocks (Miocene) at surface, covers < 0.1 % of this area

Basalt flows, cinder and lava cones, gravel, and tuffaceous sedimentary rocks mostly in Elko and some in Humboldt Counties. This unit includes the Banbury Formation (Stewart and Carlson, 1978) and the Big Island Formation in Elko County and other unnamed units. It corresponds to unit Tbg from the 1978 State map.

Basalt and andesite (Miocene) at surface, covers < 0.1 % of this area

Lava flows and breccia of aphyric and plagioclase porphyritic basalt and aphyric andesite; locally includes flow breccia, peperite, some palagonite tuff and breccia, and minor silicic ash-flow tuff and interbeds of tuffaceous sedimentary rocks. In Basin and Range and Owyhee Upland provinces unit grades upward into more silicic, andesitic, and quartz latitic flows and flow breccia, as well as some interbedded tuffs and ash-flow tuffs; also in this region includes aphyric and highly porphyritic, plagioclase-rich basalt. Interfingers with and grades laterally into units Tit and Tts. Commonly contains montmorillonite clays, zeolites, calcite, and secondary silica minerals as alteration products on fractures and in pore spaces. Age, mostly middle Miocene, but includes some rocks of early Miocene age based on vertebrate fossils from related sedimentary units and on potassium-argon ages that range from about 13 Ma to about 19 Ma; most isotopic ages are about 13 to 16 Ma. Includes Steens Basalt (Steens Mountain Basalt of Fuller, 1931) Owyhee Basalt of Corcoran and others (1962) and Kittleman and others (1967), Hunter Creek Basalt and "unnamed igneous complex" of Kittleman and others (1965, 1967), and flows of Prineville chemical type (Uppuluri, 1974; Swanson and others, 1979), which previously were considered part of the Columbia River Basalt Group (Swanson, 1969a)

Alluvial deposits (Holocene) at surface, covers < 0.1 % of this area

Sand, gravel, and silt forming flood plains and filling channels of present streams. In places includes talus and slope wash. Locally includes soils containing abundant organic material, and thin peat beds

Felsic phaneritic intrusive rocks (Cretaceous) at surface, covers < 0.1 % of this area

Granodiorite, granite, and related rocks make up the largest group of granitic intrusions exposed in Nevada. They are present in every county, and are especially abundant in west-central Nevada in an arcuate belt along the border with California extending north and eastward towards Idaho.

Landslide deposits, colluvium, and talus (Holocene to Pliocene) at surface, covers < 0.1 % of this area

Unit is mixed on the Washoe North map with basalt, tuff, diatomite, and tuffaceous sediments. It includes the units mapped as Qls from the 1978 State map. It is present in Churchill, Washoe, Nye, Esmeralda, Elko, Eureka, Humboldt, Lander, Lincoln, Mineral, and Pershing Counties.

Conglomerate, lacustrine, and tuffaceous sedimentary rocks (lower Oligocene to Upper Cretaceous (?)) at surface, covers < 0.1 % of this area

Includes the Sheep Pass Formation and equivalents in northern Nye, Lincoln, Elko, Eureka, Lander, and White Pine Counties. In most places the Sheep Pass Formation is Paleocene or Eocene (Fouch, Hanley, and Forester, 1979), although rocks from the Carlin-Piñon Range area that contain Late Cretaceous fossils have been included in the Sheep Pass Formation (Smith and Ketner, 1976, 1978). It corresponds to unit Ts1 on the 1978 State map.

Younger rhyolitic flows and shallow intrusive rocks (Miocene) at surface, covers < 0.1 % of this area

Rhyolitic flows, domes, plugs, breccias, quartz latite, rhyodacite, quartz porphyry dikes, and other shallow intrusive rocks. This unit includes rocks mapped as the Cañon Rhyolite on the Washoe North map, the Jarbidge Rhyolite and phenorhyolitic and phenodacitic flows and domes on the Elko County map, and other unnamed units. It has a distribution similar to Tt3, with exposures in the northern and southern parts of the State, but only crops out in a few places in the central region. It corresponds to unit Tr3 on the 1978 State map, and also includes a few rocks mapped as Trt on the 1978 State map. This unit is exposed in every county except White Pine.

Older silicic ash flow tuffs (lower Oligocene to middle Eocene) at surface, covers < 0.1 % of this area

Welded and nonwelded silicic ash flow tuffs, locally includes thin units of air fall tuff and sedimentary rock. This unit corresponds with the 1978 State map unit Tt1. These rocks are present in northern Nye, Elko, Eureka, and White Pine Counties.

Terrace gravels (Pliocene to Pleistocene) at surface, covers < 0.1 % of this area

Unconsolidated to poorly consolidated, poorly sorted gravels and bouldery soil above modern stream channels. In Cascade Range, clasts mostly basalt and andesite. Includes some glacial outwash deposits. In Eastern Oregon, commonly cemented by caliche

Alluvium, undifferentiated (Holocene and Pleistocene) at surface, covers < 0.1 % of this area

Unit is present in all counties. Some counties divided the alluvium into younger and older units, and some did not. For those that did not, or used other generalized terms for Quaternary rocks, the unit Qal has been used for the general undivided alluvium. Additionally, when polygons have been edited and changed to alluvium, Qal was used as the general value; hence it now is present in all counties. Qya-Younger alluvium: Map unit is used in Churchill, Elko, Esmeralda, Eureka, Humboldt, Lander, and Lincoln Counties where geologic information suggests better-defined younger versus older alluvium. It is mostly interchangeable with Qal, except that it implies some specifically younger Quaternary deposits.