Sandstone (JTrps) is interbedded grayish-red to brownish-red, medium- to fine-grained, medium- to thick-bedded sandstone and brownish-to-purplish-red coarse-grained siltstone; unit is planar to ripple cross-laminated, fissile, locally calcareous, containing desiccation cracks and root casts. Upward-fining cycles are 1.8 to 4.6 m (6-15 ft) thick. Sandstone beds are coarser and thicker near conglomerate units (JTrpcq, JTrpcl). Maximum thickness about 1,100 m (3,610 ft).
(Olsen, 1980) - Reddish-brown to brownish-purple, fine- to medium-grained micaceous sandstone, siltstone, and silty mudstone in upward-fining sequences 1 to 3 m (3-10 ft) thick. Distributed throughout formation are eight or more sequences of gray to greenish- or brownish-gray, fine-grained sandstone, siltstone and calcareous siltstone and black, microlaminated calcareous siltstone and mudstone containing diagnostic pollen, fish and dinosaur tracks. Sandstone is commonly trough cross laminated; siltstone is commonly planar laminated or bioturbated, but can be indistinctly laminated to massive. Thermally metamorphosed into hornfels where in contact with Hook Mountain Basalt. Conglomerate and conglomeratic sandstone with subrounded quartzite and quartz clasts in matrix of light-red sand to brownish-red silt (Jtc) interfingers with rocks of the Towaco Formation north and west of New Vernon. Maximum thickness is about 380 m (1,250 ft).
(Olsen, 1980) - Dark-greenish-gray to black, very-fine-grained, dense, hard basalt composed mostly of intergrown calcic plagioclase (An55-60) and clinopyroxene (pigeonite and augite). Crystals are generally less than 1 mm (0.04 in) long, but locally feldspar crystals are larger than 1.3 cm (0.5 in.). Small spherical to tubular cavities (gas-escape vesicles) may be filled by zeolite minerals or calcite. Consists of at least three major flows. Prominent amydaloidal zones occur at most contacts between flows. A thin, 2 to 8 m (6.6-26 ft) bed of siltstone (Jps) separates the lower flows. The basal 20 m (66 ft) of the lowest flow is commonly highly vesicular or brecciated. Radiating slender columns 20 to 71 cm (8-28 in) wide, caused by shrinkage while cooling, are most abundant in the highest flow. The small, circiular extrusive body forming Round Top west of Oldwick is identified as Preakness Basalt by geochemistry and position above the Orange Mountain Basalt (Houghton and others, 1992). Thickness ranges from 250 m (820ft) (Olsen and others, 1989) to 320 m (1,050 ft).
Sandy mudstone (JTrpms) is reddish-brown to brownish-red, massive, silty to sandy mudstone and siltstone, which are bioturbated, ripple cross-laminated and interbedded with lenticular sandstone. To southwest where similar lithologic units also occur, they have not been mapped separately, but have been included in undivided unit JTrp.
(Olsen, 1980) - Dark-greenish-gray to greenish-black basalt composed mostly of calcic plagioclase (typically An65) and clinopyroxene (augite and pigeonite); crystals are generally less than 1 mm (0.04 in) long. Consists of three major flows. The flows are separated in places by a weathered zone or by a thin, up to 3-m- (10-ft-) thick bed of red siltstone (not shown on map) or volcaniclastic rock. Lowest flow is generally massive and has widely spaced curvilinear joints; columnar joints in lowest flow become more common toward the northeast. Middle flow is massive or has columnar jointing. Lower part of the uppermost flow has pillow structures; upper part has pahoehoe flow structures. Tops and bottoms of flow layers are vesicular. Maximum thickness is about 182 m (597 ft).
(Olsen, 1980) - Interbedded brownish-red to light-grayish-red, fine- to coarse-grained sandstone, gray and black, coarse siltstone in upward-fining cycles, and silty mudstone. Fine-grained sandstone and siltstone are moderately well sorted, commonly cross-laminated, and have 15 percent or more feldspar; interbedded with brownish-red, indistinctly laminated, bioturbated calcareous mudstone. Thermally metamorphosed into hornfels where in contact with Preakness Basalt. Near the base are two thin, laterally continuous beds of black, carbonaceous limestone and gray, calcareous siltstone, each up to 3 m (10 ft) thick. These contain abundant fish, reptile, anthropod, and diagnostic plant fossils. Three or four, thin, gray to black siltstone and mudstone sequences occur in upper part of unit. Near Oakland, subrounded pebbles to cobbles of quartzite and quartz in a red siltstone and sandstone matrix (Jfc) interfinger with sandstone and siltstone of the Feltville Formation. Maximum thickness about 155 m (510 ft).
(Olsen, 1980) - Light- to dark-greenish-gray, medium- to coarse-grained, amygdaloidal basalt composed of plagioclase (typically An65 and commonly porphyritic), clinopyroxene (augite and pigeonite), and iron-titanium oxides such as magnetite and ilmenite. Locally contains small spherical to tubular cavities (gas-escape vesicles), some filled by zeolite minerals or calcite. Consists of two major flows. Base of lowest flow is intensely vesicular. Tops of flows are weathered and vesicular. Maximum thickness is about 110 m (360 ft) (Olsen and others, 1989).
(Olsen, 1980) - Reddish-brown to brownish-purple, fine-grained sandstone, siltstone, and mudstone; sandstone commonly micaceous, interbedded with siltstone and mudstone in fining-upward sequences mostly 1.5 to 4 m (5-13 ft) thick. Red, gray and brownish-purple siltstone and black, blocky, partly dolomitic siltstone and shale common in lower part. Irregular mudcracks, symmetrical ripple marks, and burrows, as well as gypsum, glauberite, and halite pseudomorphs are abundant in red mudstone and siltstone. Gray, fine-grained sandstone may have carbonized plant remains and reptile footprints in middle and upper parts of unit. Near Morristown, beds of quartz-pebble conglomerate (unit Jbcq) as much as 0.5 m (1.6 ft) thick interfinger with beds of sandstone, siltstone, and shale. Northeast of Boonton, beds of quartz-pebble conglomerate (not mapped separately as Jbcq) occur locally with conglomerate containing abundant clasts of gneiss and granite in matrix of reddish-brown sandstone and siltstone. Maximum thickness is about 500 m (1,640 ft).
(Olsen, 1980) - Reddish-brown to brownish-purple and grayish-red siltstone and shale (JTrp) maximum thickness 3,600 m (11,810 ft). At places contains mapped sandy mudstone (JTrpms), sandstone (JTrps), conglomeratic sandstone (JTrpsc) and conglomerate containing clasts of quartzite (JTrpcq), or limestone (JTrpcl). Formation coarsens up section and to the southwest. Quartzite conglomerate unit (JTrpcq) is reddish-brown pebble conglomerate, pebbly sandstone, and sandstone, in upward-fining sequences 1 to 2 m (3-6 ft) thick. Clasts are subangular to subrounded, quartz and quartzite in sandstone matrix. Sandstone is medium to coarse grained, feldspathic (up to 20 percent feldspar), and locally contains pebble and cobble layers. Conglomerate thickness exceeds 850 m (2,790 ft). Limestone conglomerate unit (JTrpcl) is medium-bedded to massive, pebble to boulder conglomerate. Clasts are subangular dolomitic limestone in matrix of brownish- to purplish-red sandstone to mudstone; matrix weathers light-gray to white near faults. Maximum thickness unknown. Conglomeratic sandstone (JTrpsc) is brownish-red pebble conglomerate, medium- to coarse-grained, feldspathic sandstone and micaceous siltstone; unit is planar to low-angle trough cross laminated, burrowed, and contains local pebble layers. Unit forms upward-fining sequences 0.5 to 2.5 m (1.6-8 ft) thick. Conglomeratic sandstone thickness exceeds 800 m (2,625 ft). Sandstone (JTrps) is interbedded grayish-red to brownish-red, medium- to fine-grained, medium- to thick-bedded sandstone and brownish-to purplish-red coarse-grained siltstone; unit is planar to ripple cross-laminated, fissile, locally calcareous, containing desiccation cracks and root casts. Upward-fining cycles are 1.8 to 4.6 m (6-15 ft) thick. Sandstone beds are coarser and thicker near conglomerate units (JTrpcq, JTrpcl). Maximum thickness about 1,100 m (3,610 ft). Sandy mudstone (JTrpms) is reddish-brown to brownish-red, massive, silty to sandy mudstone and siltstone, which are bioturbated, ripple cross-laminated and interbedded with lenticular sandstone. To southwest where similar lithologic units also occur, they have not been mapped separately, but have been included in undivided unit JTrp. Rhythmic cycles 2 to 7 m (7-23 ft) of thick gray-bed sequences (Trpg), termed Van Houten cycles by Olsen (1985), contain basal thin-bedded to finely laminated shale to siltstone, which grade upward through laminated to microlaminated, locally calcareous mudstone to siltstone and finally into massive silty mudstone. Lowest part of cycle has some desiccation features and local fossils; middle part has highest organic content and the most fossils; highest part contains mudcracks, burrows, and root casts. Gray-bed cycles are abundant in lower half of Passaic Formation and less common in upper half. Rocks of the Passaic Formation have been locally thermally metamorphosed to hornfels where in contact with the Orange Mountain Basalt, diabase dikes, and sheetlike intrusions. Total thickness of formation ranges from 3500 to 3600 m (11480-11810 ft).
Conglomeratic sandstone (JTrpsc) is brownish-red pebble conglomerate, medium- to coarse-grained, feldspathic sandstone and micaceous siltstone; unit is planar to low-angle trough cross laminated, burrowed, and contains local pebble layers. Unit forms upward-fining sequences 0.5 to 2.5 m (1.6-8 ft) thick. Conglomeratic sandstone thickness exceeds 800 m (2,625 ft).
Rhythmic cycles 2 to 7 m (7-23 ft) of thick gray-bed sequences (Trpg), termed Van Houten cycles by Olsen (1985), contain basal thin-bedded to finely laminated shale to siltstone, which grade upward through laminated to micro-laminated, locally calcareous mudstone to siltstone and finally into massive silty mudstone. Lowest part of cycle has some desiccation features and local fossils; middle part has highest organic content and the most fossils; highest part contains mudcracks, burrows, and root casts. Gray-bed cycles are abundant in lower half of Passaic Formation and less common in upper half.