Geologic units in Baker county, Oregon

Additional scientific data in this geographic area

Sedimentary rocks, partly metamorphosed (Paleozoic to Triassic) at surface, covers 13 % of this area

Poorly bedded argillite, chert, phyllite, phyllitic quartzite, calc-phyllite, impure limestone, and marble. In places rocks are strongly foliated. Sparse fossils (Fusilina, corals, and crinoids) indicate that the unit includes rocks of Leonardian, Ochoan, and Late Triassic age (OR084). Includes Elkhorn Ridge Argillite (OR035), Mesozoic and Paleozoic sedimentary rocks of Brown and Thayer (OR008), and the Permian Coyote Butte Formation (OR085). In Baker County includes "sedimentary and volcanic rocks" (MzPza) of Brooks and others (OR039) and metamorphosed sedimentary and minor volcaniclastic rocks containing mineral assemblages indicative of quartz-albite-muscovite-chlorite subfacies and quartz-albite-epidote-biotite subfacies of the greenschist facies. In Jefferson and Wasco Counties north of Prineville, includes "phyllite and sedimentary rocks " of Swanson (OR031). Includes part of the Burnt River Schist (OR035; OR081) and volcaniclastic facies of several metavolcanic units of Permian and Late Triassic age. Not on State map (OR001) in area of La Grande 100K quadrangle, butmapped in OR291 as Elkhorn Ridge Argillite (Triassic Permian, Pennsylvannian, and Devonian?)

Tuffaceous sedimentary rocks and tuff (Miocene to Pliocene) at surface, covers 11 % of this area

Semiconsolidated to well-consolidated mostly lacustrine tuffaceous sandstone, siltstone, mudstone, concretionary claystone, conglomerate, pumicite, diatomite, air-fall and water-deposited vitric ash, palagonitic tuff and tuff breccia, and fluvial sandstone and conglomerate. Palagonitic tuff and breccia grade laterally into altered and unaltered basalt flows of unit Tob. In places includes layers of fluvial conglomerate and, in parts of the Deschutes-Umatilla Plateau, extensive deposits of fanglomerate composed mostly of Miocene basalt debris and silt. Also includes thin, welded and nonwelded ash-flow tuffs. Vertebrate and plant fossils indicate rocks of unit are mostly of Clarendonian and Hemphillian (late Miocene and Pliocene) age. Potassium-argon ages on interbedded basalt flows and ash-flow tuffs range from about 4 to 10 Ma. Includes the Drewsey Formation of Shotwell and others (1963); sedimentary parts of the Rattlesnake Formation of Brown and Thayer (1966); an interstratified ash-flow tuff has been radiometrically dated by potassium-argon methods at about 6.6 Ma (see Fiebelkorn and others, 1983); Bully Creek Formation of Kittleman and others (1967); Dalles Formation of Newcomb (1966, 1969); Shutler Formation of Hodge (1932), McKay beds of Hogenson (1964) and Newcomb (1966) (see also Shotwell, 1956); Kern Basin Formation of Corcoran and others (1962); Rome beds of Baldwin (1976); parts of the (now obsolete) Danforth Formation of Piper and others (1939), Idaho Group of Malde and Powers (1962), Thousand Creek Beds of Merriam (1910); the Madras (or Deschutes) Formation, the "Simtustus formation" of Smith (1984), and the Yonna Formation (Newcomb, 1958). In areas west of Cascade crest, includes the Sandy River Mudstone and the Troutdale Formation of Trimble (1963) and the lower Pliocene Helvetia Formation of Schlicker and Deacon (1967)

Grande Ronde Basalt (Early to Middle Miocene) at surface, covers 10 % of this area

Flows of dark-gray to black, aphyric tholeiitic basalt, including both high- and low-Mg chemical types (Swanson and others, 1979). Potassium-argon ages mostly in the range of 15 to 17 Ma (Lux, 1982; Watkins and Baksi, 1974; Fiebelkorn and others, 1983)

Strawberry Volcanics (Miocene to Pliocene) at surface, covers 7 % of this area

Flows and flow breccia of basalt, basaltic andesite, and andesite; includes restricted domal complexes and related flows and breccia of rhyolite and dacite (Thayer, 1957; Brown and Thayer, 1966). Potassium-argon ages are mostly in the range of 12 to 20 Ma (Robyn, 1977; Fiebelkorn and others, 1983)

Alluvial deposits (Holocene) at surface, covers 6 % of this area

Sand, gravel, and silt forming flood plains and filling channels of present streams. In places includes talus and slope wash. Locally includes soils containing abundant organic material, and thin peat beds

Clastic rocks and andesite flows (Paleocene to Early Oligocene) at surface, covers 5 % of this area

Mostly andesitic lava flows, domes, breccia, and small intrusive masses and lesser basaltic to rhyolitic rocks; interlayered saprolite, bedded volcaniclastic and epiclastic mudstone, claystone, siltstone, sandstone, conglomerate, and mudflow (lahar) deposits. Mostly consists of Clarno Formation of central Oregon and unnamed rocks of Basin and Range Province in south-central Oregon. Fossil plants and vertebrates in these rocks are Eocene in age. Andesite and basalt lava flows are typically slightly altered; most glass is devitrified and altered to clay minerals, zeolites, and secondary feldspar. Reliable K-Ar ages of rocks from unit range from about 54 Ma to about 37 Ma (Evernden and James, 1964; Fiebelkorn and others, 1983). A number of K-Ar ages on rocks shown on source maps as part of the Clarno Formation are in the range of about 36 to 19 Ma (Fiebelkorn and others, 1983). Although these rocks are lithologically similar to, but generally less altered than, rocks of the Clarno Formation, they are coeval with the John Day Formation. Most of these enigmatic rocks of Oligocene and early Miocene age are included in unit Tas. At base of unit in Blue Mountains Province, locally includes quartzose and feldspathic sandstone, siltstone, and shale largely of granitic or metamorphic provenance; fossil plants in these sedimentary rocks indicate an early Eocene or Paleocene age

Intrusive rocks (Jurassic to Cretaceous) at surface, covers 5 % of this area

Hornblende and biotite quartz diorite (tonalite), trondhjemite, granodiorite, and small amounts of norite, in batholithic masses and large dikelike bodies. Includes Bald Mountain Tonalite and Anthony Lake Granodiorite of Taubeneck (1957), tonalite and trondhjemite of Wallowa batholith and Cornucopia stock (Taubeneck, 1964; Nolf, 1966), quartz diorite intrusion in the Snake River area (Morrison, 1963), quartz diorite and minor other intrusive rocks in the Caviness quadrangle (Wolff, 1965), quartz diorite northeast of John Day and southeast of Ironside Mountain (Thayer and Brown, 1964), quartz diorite in the Sparta and Durkee quadrangles (Prostka, 1962; 1967), and granodiorite and related rocks of the Pueblo Mountains (Roback and others, 1987). Rubidium-strontium and potassium-argon ages indicate an age range from about 94 to 160 Ma (Taubeneck, 1963; Thayer and Brown, 1964; Armstrong and others, 1976)

Gabbroic rocks (Paleozoic to Triassic) at surface, covers 5 % of this area

Most gabbro genetically related to ultramafic rocks, but some probably derived from metamorphism of Triassic and older volcanic rocks

Imnaha Basalt (Early Miocene) at surface, covers 5 % of this area

Mostly coarse-grained, plagioclase porphyritic basalt; flows commonly contain zeolite amygdules and montmorillonitic alteration is widespread. Potassium-argon ages mostly 16 to 17 Ma (McKee and others, 1981)

Columbia River Basalt Group and related flows (Miocene) at surface, covers 4 % of this area

Subaerial basalt and minor andesite lava flows and flow breccia; submarine palagonitic tuff and pillow complexes of the Columbia River Basalt Group (Swanson and others, 1979); locally includes invasive basalt flows. Flows locally grade laterally into subaqueous pillow-palagonite complexes and bedded palagonitic tuff and breccia. In places includes tuffaceous sedimentary interbeds. Joints commonly coated with nontronite and other clayey alteration products. Occurs principally in the Willamette Valley from Salem north to the Columbia River, and in the northern Coast Range. Unit includes correlative Cape Foulweather and Depoe Bay Basalts in the Coast Range (Snavely and others, 1973, 1976a, 1976b; Swanson and others, 1979; Wells and others, 1983). In Eastern Oregon, occurs principally in Deschutes-Umatilla Plateau and in the Blue Mountains. K-Ar ages range from about 6 to about 16.5 Ma (McKee and others, 1977; Swanson and others, 1979; Sutter, 1978; Lux, 1982). Locally separated into Tcs, Tcw, Tcg, Tcp, and Tci

Sedimentary and volcanic rocks (Late Triassic? to Jurassic) at surface, covers 4 % of this area

Olive-drab, pale-brown, dark-gray, and black volcanic graywacke and siltstone; lesser conglomerate and slate, and minor limestone and chert. Includes more extensive outcrops of Triassic or Jurassic limestone at north base of Juniper Mountain in northern Malheur County and near Huntington in southeastern Baker County. Interlayers of silicic and intermediate volcanic rocks are rare. Locally metamorphosed to prehnite-pumpellyite and zeolite facies and in places to greenschist facies. Folded, sheared, and locally foliated. Includes the Weatherby Formation of Brooks (1979). Age is Late Triassic(?) and Early and Middle Jurassic (Sinemurian-Callovian)

Volcanic rocks (Permian to Triassic) at surface, covers 4 % of this area

Massive flows of porphyritic meta-andesite, metabasalt, spilite, and keratophyre, volcanic breccia, and subordinate amounts of fine-grained volcaniclastic rocks. In eastern Oregon probably mostly Late Triassic in age, but includes some Permian rocks (OR084). Includes Clover Creek Greenstone (OR035), Gold Creek greenstone (informal name; OR029), and greenstone of Ashley (OR081)

Terrace, pediment, and lag gravels (Pleistocene to Holocene) at surface, covers 3 % of this area

Unconsolidated deposits of gravel, cobbles, and boulders intermixed and locally interlayered with clay, silt, and sand. Mostly on terraces and pediments above present flood plains. Includes older alluvium of Smith and others (1982) in the Klamath Mountains and both high- and low-level terraces along Oregon coast. Includes dissected alluvial fan deposits northeast of Lebanon, and Linn and Leffler Gravels of Allison and Felts (1956)

Rhyolite and dacite (Miocene to Pliocene) at surface, covers 3 % of this area

Ash-flow tuff, lava flows, pumice-lapilli tuff, coarse pumicite, flow breccia, and domal complexes of rhyolitic, rhyodacitic, and dacitic composition; in places includes peralkaline rhyolite and some andesite and andesite breccia. Locally porphyritic with phenocrysts of alkali feldspar, plagioclase, and minor augite, ferro-hedenbergite, hornblende, hypersthene, or biotite. Commonly flow banded; locally glassy. Many of the ash--flow tuffs exhibit flow features and only obscure vitro-clastic textures. In places includes interlayers of silicic volcaniclastic rocks and tuffaceous sedimentary rocks. Includes rhyolite at Owyhee Dam, Jump Creek Rhyolite, and Littlefield Rhyolite, all of Kittleman and others (1965); Dooley Rhyolite Breccia of Gilluly (1937), radiometrically dated at 14.7 ñ 0.4 Ma by potassium-argon methods (Fiebelkorn and others, 1983); resurgent domal masses in McDermitt caldera area; and extensive unnamed flows and ash-flow tuffs in the central and southern part of the Owyhee Upland. Also includes isolated masses of dacitic and rhyodacitic flows, breccia, and ash-flow tuff along eastern slope of Cascade Range that are lapped by flows and sediments of the Madras (or Deschutes) Formation. Potassium-argon ages on rocks in unit from southeast Oregon range from about 13 to 16 Ma; lenses of interbedded tuffaceous sedimentary rocks locally contain a Miocene (Barstovian) vertebrate fauna

Granite and diorite (Triassic to Jurassic) at surface, covers 2 % of this area

Felsic to intermediate, granitoid intrusive rocks. Includes Jurassic muscovite granodiorite, hornblende gabbro, tonalite, and quartz diorite of southwest Oregon (Smith and others, 1982)

Glacial deposits (Pleistocene) at surface, covers 2 % of this area

Unsorted bouldery gravel, sand, and rock flour in ground, terminal, and lateral moraines. Locally partly sorted

Wanapum Basalt (Middle Miocene) at surface, covers 2 % of this area

Flows of gray to dark-gray, medium-grained, commonly plagioclase porphyritic basalt of Frenchman Springs petrochemical type (Wright and others, 1973). Generally exhibits blocky to platy jointing. Potassium-argon ages mostly about 15 Ma (Lux, 1982; Fiebelkorn and others, 1983)

Saddle Mountains Basalt (Middle to Late Miocene) at surface, covers 1 % of this area

Petrographically diverse flows of basalt erupted between about 13.5 and 6 Ma (McKee and others, 1977; Swanson and others, 1979)

Volcanic and metavolcanic rocks (Late Triassic) at surface, covers 1 % of this area

Green to gray spilite and keratophyre flows and flow breccia; and subordinate amounts of coarse volcaniclastic sandstone, tuff, sandstone, siltstone, chert, conglomerate, and limestone. Marine fauna from interlayered sedimentary rocks indicates unit is mostly of Karnian (Late Triassic) age. Includes Late Triassic "andesitic and basaltic rocks" of Nolf and Taubeneck (1963), and the basaltic to rhyolitic metavolcanic rocks and interbedded sedimentary rocks of the Huntington Formation of Brooks (1979). Equivalent, in part, to unit TrPv

Sedimentary rocks (Jurassic) at surface, covers 0.9 % of this area

Black and gray mudstone, shale, siltstone, graywacke, andesitic to dacitic water-laid tuff, porcelaneous tuff, and minor interlayers and lenses of limestone and fine-grained sediments metamorphosed to phyllite or slate. Locally includes some felsite, andesite and basalt flows, breccia, and agglomerate. Marine invertebrate fauna indicates age range from Early Jurassic (Hettangian) to early Late Jurassic (Oxfordian). In northeast Oregon, includes Graylock Formation, Mowich Group, and Shaw Member (of Snowshoe Formation) of Dickinson and Vigrass (1965); Keller Creek Shale of Brown and Thayer (1966); Weberg, Warm Springs, Snowshoe, Trowbridge, and Lonesome Formations of Lupher (1941); the Coon Hollow Formation of Morrison (1964); and unnamed Jurassic rocks near Juniper Mountain in northern Malheur County (Wagner and others, 1963)

Marine sedimentary rocks (Early Triassic) at surface, covers 0.9 % of this area

Black, green, and gray argillite, mudstone, and shale; graywacke, sandy limestone, tuff, and some coarse volcaniclastic rocks; chert, sandstone comprised of chert clasts, and chert pebble conglomerate; thin-bedded and massive limestone. Locally contains some interbedded lava flows, mostly spilite or keratophyre. In places metamorphosed. Invertebrate marine fauna indicates unit mostly of Late Triassic (Karnian and Norian) age. Includes the Begg and Brisbois Formations of Dickinson and Vigrass (1965; Vester Formation of Brown and Thayer, 1966) and the Rail Cabin Argillite of Dickinson and Vigrass (1965); Fields Creek Formation and Laycock and Murderers Creek Graywackes of Brown and Thayer (1966); Martin Bridge Formation and lower sedimentary series in and near the Wallowa Mountains (Prostka, 1962; Nolf, 1966); and Doyle Creek and Wild Sheep Creek Formations (Vallier, 1977). Probably partly age correlative with rocks of the Applegate Group (Wells and Peck, 1961) of southwestern Oregon

Basalt and andesite (Miocene) at surface, covers 0.6 % of this area

Lava flows and breccia of aphyric and plagioclase porphyritic basalt and aphyric andesite; locally includes flow breccia, peperite, some palagonite tuff and breccia, and minor silicic ash-flow tuff and interbeds of tuffaceous sedimentary rocks. In Basin and Range and Owyhee Upland provinces unit grades upward into more silicic, andesitic, and quartz latitic flows and flow breccia, as well as some interbedded tuffs and ash-flow tuffs; also in this region includes aphyric and highly porphyritic, plagioclase-rich basalt. Interfingers with and grades laterally into units Tit and Tts. Commonly contains montmorillonite clays, zeolites, calcite, and secondary silica minerals as alteration products on fractures and in pore spaces. Age, mostly middle Miocene, but includes some rocks of early Miocene age based on vertebrate fossils from related sedimentary units and on potassium-argon ages that range from about 13 Ma to about 19 Ma; most isotopic ages are about 13 to 16 Ma. Includes Steens Basalt (Steens Mountain Basalt of Fuller, 1931) Owyhee Basalt of Corcoran and others (1962) and Kittleman and others (1967), Hunter Creek Basalt and "unnamed igneous complex" of Kittleman and others (1965, 1967), and flows of Prineville chemical type (Uppuluri, 1974; Swanson and others, 1979), which previously were considered part of the Columbia River Basalt Group (Swanson, 1969a)

Landslide and debris-flow deposits (Pleistocene to Holocene) at surface, covers 0.6 % of this area

Unstratified mixtures of fragments of adjacent bedrock. Locally includes slope wash and colluvium. Largest slides and debris flows occur where thick sections of basalt and andesite flows overlie clayey tuffaceous rocks. May include some deposits of late Pliocene age

Olivine basalt (Miocene to Pliocene) at surface, covers 0.6 % of this area

Thin, commonly open-textured (diktytaxitic), subophitic to intergranular olivine basalt flows, intercalated with and grades laterally through palagonite breccia and tuff into tuffaceous sedimentary rocks (unit Ts). In places includes flows of platy olivine andesite or basaltic andesite. Several potassium-argon ages ranging from about 4 to 7 Ma indicate unit is mostly of early Pliocene and late Miocene age. Includes Shumuray Ranch Basalt and Antelope Flat Basalt of Kittleman and others (1965), Grassy Mountain Basalt of Corcoran and others (1962), Drinkwater Basalt of Bowen and others (1963), basalt formerly assigned to Danforth Formation by Piper and others (1939) (see Walker, 1979), Hayes Butte Basalt of Hampton (1964), Pliocene and upper Miocene basalt flows capping and interstratified with the Madras (or Deschutes) Formation, and basalt flows interstratified in the Dalles Formation of Newcomb (1966; 1969)

Sedimentary and volcanic rocks, partly metamorphosed (Permian to Triassic) at surface, covers 0.6 % of this area

Complexly folded, locally highly foliated and recrystallized undifferentiated sedimentary and volcanic rocks that in places are lithologically similar to Jurassic and Triassic rocks in the Aldrich Mountains of the Blue Mountains province and in other places resemble Elkhorn Ridge Argillite, Clover Creek Greenstone, and Burnt River Schist (Gilluly, 1937). Age probably mostly Late Permian to Late Triassic, but, as shown, may include some Early Jurassic rocks

Terrace gravels (Pliocene to Pleistocene) at surface, covers 0.5 % of this area

Unconsolidated to poorly consolidated, poorly sorted gravels and bouldery soil above modern stream channels. In Cascade Range, clasts mostly basalt and andesite. Includes some glacial outwash deposits. In Eastern Oregon, commonly cemented by caliche

Sedimentary rocks (Triassic to Jurassic) at surface, covers 0.4 % of this area

Black, dark-gray, and dark -brownish-gray, thin-bedded siliceous or limy mudstone mostly consists of the Hurwal Formation in the Wallowa Mountains. In lower and middle parts contains Triassic fossils and in upper part Early Jurassic fossils (Nolf, 1966). Contact metamorphosed adjacent to Wallowa batholith

Sedimentary and volcanic rocks, partly metamorphosed (Permian) at surface, covers 0.4 % of this area

Epiclastic and volcaniclastic rocks, chert, limestone, and lava flows of mid- or Early Permian(?) age that are moderately to intensely metamorphosed. Includes part of Hunsaker Creek Formation of Vallier (1977), in the eastern Blue Mountains province, composed mostly of keratophyre flows, keratophyric volcaniclastic rocks and minor spilite, mudstone, and limestone. In Wheeler County, includes phyllite, chert, and fusulinid-bearing crystalline limestone of probable Early Permian (Wolfcampian?) age (Oles and Enlows, 1971), associated with phyllite, chlorite, and muscovite schist, and lawsonite-crossite blueschist (Swanson, 1969b)

Silicic ash-flow tuff (Late Miocene to Early Pliocene) at surface, covers 0.3 % of this area

Ash-flow tuff and associated pumiceous air-fall tuff mostly of rhyolitic and rhyodacitic composition; includes minor tuffaceous sedimentary rocks. Grades laterally through less-densely welded tuff to nonwelded ash-flow tuff and interlayered tuffaceous sediments of unit Ts. Potassium-argon ages (Greene and others, 1972; Parker and Armstrong, 1972; Walker, 1979; McKee and others, 1976) on several different ash-flow tuffs included in unit range from about 4 to 10 Ma; although most ages are in the range of 6 to 9 Ma. Includes the Devine Canyon, Prater Creek, and Rattlesnake Ash-flow Tuffs (Walker, 1979), originally considered a part of the (now obsolete) Danforth Formation of Piper and others (1939), and the Rattlesnake Formation and the volcanic and fluvial deposits (undivided) and marginal facies of the Columbia River Group (undivided) of Brown and Thayer (1966). Also includes the welded soda--rhyolite tuff breccia of Dickinson and Vigrass (1965) in the Suplee-Izee area, the upper Miocene or lower Pliocene welded tuff of Prostka (1962; 1967) in the Baker area. "Welded ash-flow tuff" of Swanson (1969a) and the Pliocene Peyerl Tuff (Hampton, 1964) west of Fort Rock Valley, dated at about 4.5 Ma (McKee and others, 1976)

Marble (Permian to Triassic) at surface, covers 0.3 % of this area

Informally called the "Nelson marble" by Prostka (1967). Light-gray, fine-grained marble and medium- to dark-gray calcareous phyllite, exposed in a nearly continuous band from the Snake River westward through Nelson Station, about 6 km southeast of Durkee, and westward to the area north of Pedro Mountain, southern Baker County. Prostka (1967) considers the Nelson correlative with Upper Triassic Martin Bridge Formation of Ross (1938), whereas Ashley (1967) and Brooks and Vallier (1967) consider it older (Permian?) and stratigraphically and structurally related to Elkhorn Ridge Argillite and Burnt River Schist

Fanglomerate (Pleistocene to Holocene) at surface, covers 0.3 % of this area

Poorly sorted and poorly stratified alluvial fan debris, slope wash, colluvium, and talus; composed mostly of silt and fragments of basalt, basaltic andesite, and andesite. In places includes small areas of pediment gravels and colluvium

John Day Formation of east-central Oregon (Late Eocene to Early Miocene) at surface, covers 0.3 % of this area

John Day Formation of east-central Oregon (lower Miocene, Oligocene, and uppermost Eocene?)

Sedimentary and volcanic rocks (Late Triassic) at surface, covers 0.2 % of this area

Undifferentiated marine sedimentary rocks and volcanic rocks, locally slightly to moderately metamorphosed, of Late(?) Triassic age, exposed principally in Hells Canyon of Snake River, locally in tributary canyons of Imnaha River, and in several areas marginal to the Wallowa Mountains

Rhyolitic tuff, tuffaceous sedimentary rocks, and lava flows (Late Eocene to Early Miocene) at surface, covers 0.2 % of this area

Rhyolitic to dacitic varicolored bedded tuff, lapilli tuff, and fine- to medium-grained tuffaceous sedimentary rocks with interstratified welded and nonwelded ash-flow tuff and interbedded basalt and andesite flows. Also includes minor rhyolite and dacite flows and domes. Glass in tuff and tuffaceous sedimentary rocks is commonly altered to zeolites, clay minerals, and small amounts of opal, chalcedony, orthoclase, and calcite. Fossil plants and vertebrates indicate an Oligocene and Miocene age. Locally a late Hemingfordian age indicated by mammalian fauna (Woodburn and Robinson, 1977). May include some rocks of middle Miocene age in the area west and northwest of Lakeview. Potassium-argon ages on rocks from unit range from about 36 Ma (Swanson and Robinson, 1968) to about 20 Ma. Includes Pike Creek Formation of Walker and Repenning (1965), originally identified as Pike Creek Volcanic Series by Fuller (1931), and unnamed volcanic and volcaniclastic rocks of southern Lake County, some of which have been correlated with the Miocene and Oligocene Cedarville Formation of northeastern California

Ultramafic and mafic intrusive rocks and serpentinized equivalents (Paleozoic to Triassic) at surface, covers 0.1 % of this area

Peridotite, pyroxenite, gabbro, and norite. Light-green, gray, and black serpentine, mostly derived from peridotite; commonly highly sheared; in places includes some metavolcanic rocks and metamorphosed inclusions of keratophyre and chert. Includes ultramafic and mafic phases of the ophiolitic Canyon Mountain Complex of Thayer (1963; 1977) and Brown and Thayer (1966), alpine mafic rocks of Wolff (1965), gabbro of Ashley (1967), and serpentinite-matrix melange of Brooks and others (1983) and Ferns and others (1983):

Ridge-capping basalt and basaltic andesite (Late Miocene to Pliocene) at surface, covers 0.1 % of this area

Flows and flow breccia of basaltic andesite and lesser diktytaxitic to intergranular olivine basalt. Includes some dense, aphyric flows, commonly with either cryptocrystalline or pilotaxitic to trachytic texture, and porphyritic flows with phenocrysts and glomerocrysts of olivine, hypersthene, and labradorite. A few flows contain both hypersthene and calcic augite phenocrysts. Olivine mostly fresh or slightly altered to iddingsite in flows high in section; flows low in section show some alteration to clays (nontronite and saponite), secondary silica minerals, and calcite; pinkish-brown glass in some flows unaltered. Locally includes some andesite and dacite. Some flows of this unit are lithologically similar to flow rocks of the High Cascade volcanic sequence and some are more like flows that in the past have been mapped as part of the Sardine Formation (Peck and others, 1964) and Elk Lake Formation of McBirney and others (1974) and Sutter (1978). Potassium-argon ages of rocks from this unit range from about 4 to 8 or 9 Ma. Includes some rocks formerly mapped as Rhododendron Formation by Peck and others (1964)

Mafic and intermediate vent rocks (Miocene to Pliocene) at surface, covers 0.1 % of this area

Basaltic and andesitic agglomerate, breccia, scoria, cinders, flows, and intrusive masses forming lava cones and small shields

Andesite and dacite and sedimentary rocks (Oligocene to Miocene) at surface, covers < 0.1 % of this area

Lava flows, breccia, volcaniclastic and epiclastic rocks mostly of andesitic and dacitic composition; includes minor amounts of altered basaltic rocks. Joint surfaces and cavities commonly lined with hematite or montmorillonite clay, secondary silica minerals, zeolites, celadonite, or calcite. Andesite and dacite typically have plagioclase, hornblende, and clinopyroxene phenocrysts; some flows aphyric. Platy flow-jointing common. Age, mostly Oligocene; may include some rocks of early Miocene age. As shown, may include some rocks older than Oligocene, correlative with upper parts of unit Tea. One potassium-argon age of about 28 Ma on porphyritic hornblende andesite from Sheep Creek, southwest corner of Union County, indicates in part coeval with unit Tsf

Mixed rocks (Paleozoic to Mesozoic) at surface, covers < 0.1 % of this area

Intermingled, commonly highly sheared metasedimentary, metavolcanic, and igneous rocks. Includes serpentinite, altered gabbro, chert, siliceous phyllite, greenstone, and limestone

Basalt (Middle to Late Miocene) at surface, covers < 0.1 % of this area

Basalt flows, flow breccia, and basaltic peperite; minor andesite flows; some interbeds of tuff and tuffaceous sedimentary rocks. Basalt is aphyric to moderately porphyritic with phenocrysts of plagioclase and olivine and exhibits both subophitic and diktytaxitic textures. Includes Picture Rock Basalt of Hampton (1964), radiometrically dated by potassium-argon methods as middle(?) and late Miocene in age (see Fiebelkorn and others, 1983), flows of Deer Butte Formation of Kittleman and others (1967), and extensive unnamed flow sequences in the Basin-Range and Owyhee Upland Provinces of southern Lake, Harney, and Malheur Counties that are younger than Steens Basalt, dated at about 15 Ma (Baksi and others, 1967) and the Owyhee Basalt, dated at about 14 Ma (Bottomley and York, 1976; see also Fiebelkorn and others, 1983), and older than 7 or 8 Ma. Partly coeval with the Saddle Mountains Basalt of the Columbia River Basalt Group (Swanson and others, 1979)

Andesite (Quaternary) at surface, covers < 0.1 % of this area

Forms major stratovolcanoes dominantly of aphyric to porphyritic basaltic andesite and andesite; phenocrysts are principally pyroxene, olivine, plagioclase, and, rarely, hornblende. Locally includes dacite and minor basalt

Rhyolite and dacite domes and flows and small hypabyssal intrusive bodies (Late Eocene to Miocene) at surface, covers < 0.1 % of this area

Mostly light-gray to red, dense, flow-banded, nonporphyritic and porphyritic rhyolite and dacite in nested domes, small intrusive bodies, and related flows. Includes some near-vent breccias, pumice-lapilli tuffs, and coarse pumicites. Commonly associated with mercury mineralization. Includes several small hypabyssal intrusions of diorite, granodiorite, and quartz monzonite exposed in Paisley Hills of Lake County (Muntzert, 1969; Muntzert and Field, 1968). In many places represents vents for lava flows and tuff of unit Tsf

Welded tuffs and tuffaceous sedimentary rocks (Middle to Late Miocene) at surface, covers < 0.1 % of this area

Partly to densely welded vitric and vitric-crystal tuff of soda-rhyolitic, rhyolitic, and rhyodacitic composition that interfingers with and grades laterally into unit Tit. Includes some nonwelded ash-flow tuff and tuffaceous sedimentary rocks. Potassium-argon ages range from about 13 to 16 Ma. In Harney and Malheur Counties, it commonly overlies unit Tmb. Includes Dinner Creek Welded Tuff of Haddock (1965; 1967) and middle and upper Miocene ash-flow tuffs of Rytuba and others (1982; 1983a, b), widely exposed in the Trout Creek Mountains and adjacent areas, erupted from the McDermitt caldera complex, west and southwest of McDermitt, Nevada-Oregon, the White Horse caldera, northwest of McDermitt, and several other vent areas

Columbia River Basalt Group. (Miocene) at surface, covers < 0.1 % of this area

Large-volume lava flows of tholeiitic basalt, basaltic andesite, and subordinate andesite in western Idaho; consists of Imnaha Basalt (17.5-16.5 Ma), Grande Ronde Basalt (16.5-15.6 Ma), Wanapum Basalt (15.6-14.5 Ma), and Saddle Mountains Basalt (14.5-6 Ma). Includes porphyritic basalt and basaltic andesite in western Owyhee County. (Quaternary to Eocene Continental Volcanic and Intrusive Rocks).

Seven Devils Group. (Triassic and Permian) at surface, covers < 0.1 % of this area

Basaltic to rhyolitic (largely mafic) arc-derived volcanic and volcaniclastic rocks of the Wallowa terrane; includes minor limestone. Composed of Windy Ridge, Hunsaker Creek, Wild Sheep Creek, and Doyle Creek formations. (Mesozoic-Paleozoic Rocks of the Blue Mountains Island-Arc Complex).

Mafic and intermediate intrusive rocks (Miocene to Pliocene) at surface, covers < 0.1 % of this area

Dikes, plugs, and sills of basalt, diabase, gabbro, and lesser andesite that fed many of the Miocene basalt and andesite flows in units Tc and Tba. Some intrusions are rootless and are invasive into sedimentary sequences; includes related breccia and peperite. Includes the Monument dike swarm of northwestern Grant County (OR061), the Chief Joseph dike swarm principally in Baker and Wallowa Counties (OR093), the Steens Mountain dike swarm in Harney County (OR005; OR094; OR095) and numerous isolated intrusive bodies in southern Lake County and several intrusive masses in and near-vent flows in southern Malheur County (OR023;OR024). May also include some lower Pleistocene(?) rocks

Subaqueous pyroclastic ejecta of basaltic cinder cones (Miocene to Early Pliocene) at surface, covers < 0.1 % of this area

Deposits of bombs, breccia, and mafic to intermediate tuff; occurs as palagonitic tuff and breccia cones, rings, and ridges. In places interbedded with lacustrine sedimentary rocks

Tuffaceous sedimentary rocks, tuffs, pumicites, and silicic flows (Miocene) at surface, covers < 0.1 % of this area

Moderately well indurated lacustrine and fluvial (flood-plain) deposits of tuff, pumicite, palagonite tuff, and lesser siltstone, arkosic sandstone, and pebble and cobble conglomerate. Locally contains some lignite beds. Former glass in silicic vitroclastic debris commonly crystallized and altered to secondary silica minerals, alkali feldspar, zeolites, and clay minerals. Contains some welded and nonwelded ash-flow tuffs, and minor rhyolite flows. Widespread and abundant vertebrate fossils and minor plant fossils indicate that most of unit is of middle Miocene (Barstovian) age; parts of unit between Goose Lake and Warner Valley may include rocks of early Miocene age. Locally interlayered with and locally overlies basalt and andesite flows of unit Tmb. Overlies and locally interfingers with Picture Gorge Basalt (Thayer and Brown, 1966) and with Miocene basalt south of Prineville. Includes Mascall Formation of Merriam (1901), Sucker (Succor) Creek Formation of Corcoran and others (1962) and Kittleman and others (1967), Drip Spring Formation of Kittleman and others (1965, 1967), Trout Creek Formation of Smith (1926), and "rocks of Miocene age" of Malde and Powers (1962) in the southern Owyhee Upland province. In southeast Oregon, some of these rocks represent caldera and moat-fill deposits

Sedimentary rocks, partly metamorphosed (Paleozoic) at surface, covers < 0.1 % of this area

Well-bedded limestone, fossiliferous cherty limestone, calcareous and carbonaceous sandstone, chert grit, argillite, and some conglomerate. In places foliated and metamorphosed. Includes fault slivers of Devonian rocks (Kleweno and Jeffords, 1961), Coffee Creek Formation of Mississippian age, Spotted Ridge Formation of Pennsylvanian age (Merriam and Berthiaume, 1943; Mamay and Read, 1956), and Paleozoic sedimentary and metamorphosed sedimentary and volcanic rocks, including sericite schist, amphibolite, and hornblende-garnet schist of Brown and Thayer (1966)

Olds Ferry terrane. (Jurassic and Triassic) at surface, covers < 0.1 % of this area

Basaltic to rhyolitic (largely intermediate) arc-derived volcanic and volcaniclastic rocks of the Huntington Formation; includes minor chert and limestone. (Mesozoic-Paleozoic Rocks of the Blue Mountains Island-Arc Complex).

Pyroclastic ejecta of basaltic cinder cones (Miocene to Early Pliocene) at surface, covers < 0.1 % of this area

Mostly unconsolidated, oxidized, fine to course, scoriaceous cinders, bombs, and agglutinate deposited in subaerial environment

Marine sandstone and siltstone (Middle Eocene) at surface, covers < 0.1 % of this area

Thin- to thick-bedded, crossbedded, well-sorted, fine- to medium-grain sandstone, siltstone, and mudstone; characterized by sparse fine white mica; shallow marine depositional setting at least partly of deltaic origin. Contains foraminiferal and molluscan faunas of early middle Eocene age. Included by Diller (1898) in the upper part of the Umpqua Formation, by Baldwin (1974) and Ryberg (1984) in the Flournoy Formation of the Umpqua Group, and by Molenaar (1985) in Camas Valley and the White Tail Ridge Members of Baldwin (1974) of the Umpqua Formation

Baker Terrane. (Mesozoic and Paleozoic) at surface, covers < 0.1 % of this area

Massive and ribbon chert, phyllite, argillite, cherty limestone, and limestone deposited in relatively deep water, possibly in a forearc basin setting. (Mesozoic-Paleozoic Rocks of the Blue Mountains Island-Arc Complex).

Intrusive rocks (Triassic and Permian). (Triassic and Permian) at surface, covers < 0.1 % of this area

Diorite, tonalite, granodiorite, gabbro, norite, quartz diorite, and trondhjemite; basement of, and feeders to, volcanic rocks in Seven Devils Group (Wallowa terrane) and Olds Ferry terrane. (Mesozoic-Paleozoic Rocks of the Blue Mountains Island-Arc Complex).

Coon Hollow and Weatherby formations. (Cretaceous and Jurassic) at surface, covers < 0.1 % of this area

Marine mudstone and subordinate conglomerate and sandstone of the Coon Hollow Formation south of Lewiston and turbiditic sandstone, mudstone, volcanic conglomerate, and andesite and rhyolite tuff of the Weatherby Formation north of Weiser. (Mesozoic-Paleozoic Rocks of the Blue Mountains Island-Arc Complex).