Skip to main content

Geologic units in Wheeler county, Oregon

Picture Gorge Basalt (middle and lower Miocene) (Early to Middle Miocene) at surface, covers 38 % of this area

Flows of aphyric and plagioclase porphyritic flood basalt. Potassium-argon ages mostly 15.0 to 16.4 Ma (Watkins and Baksi, 1974; Fiebelkorn and others, 1983)

Lithology: basalt

Clastic rocks and andesite flows (lower Oligocene?, Eocene, and Paleocene?) (Paleocene to Early Oligocene) at surface, covers 13 % of this area

Mostly andesitic lava flows, domes, breccia, and small intrusive masses and lesser basaltic to rhyolitic rocks; interlayered saprolite, bedded volcaniclastic and epiclastic mudstone, claystone, siltstone, sandstone, conglomerate, and mudflow (lahar) deposits. Mostly consists of Clarno Formation of central Oregon and unnamed rocks of Basin and Range Province in south-central Oregon. Fossil plants and vertebrates in these rocks are Eocene in age. Andesite and basalt lava flows are typically slightly altered; most glass is devitrified and altered to clay minerals, zeolites, and secondary feldspar. Reliable K-Ar ages of rocks from unit range from about 54 Ma to about 37 Ma (Evernden and James, 1964; Fiebelkorn and others, 1983). A number of K-Ar ages on rocks shown on source maps as part of the Clarno Formation are in the range of about 36 to 19 Ma (Fiebelkorn and others, 1983). Although these rocks are lithologically similar to, but generally less altered than, rocks of the Clarno Formation, they are coeval with the John Day Formation. Most of these enigmatic rocks of Oligocene and early Miocene age are included in unit Tas. At base of unit in Blue Mountains Province, locally includes quartzose and feldspathic sandstone, siltstone, and shale largely of granitic or metamorphic provenance; fossil plants in these sedimentary rocks indicate an early Eocene or Paleocene age

Lithology: andesite; basalt; rhyolite

John Day Formation of east-central Oregon (lower Miocene, Oligocene, and uppermost Eocene?) (Late Eocene to Early Miocene) at surface, covers 12 % of this area

Landslide and debris-flow deposits (Holocene and Pleistocene) (Pleistocene to Holocene) at surface, covers 11 % of this area

Unstratified mixtures of fragments of adjacent bedrock. Locally includes slope wash and colluvium. Largest slides and debris flows occur where thick sections of basalt and andesite flows overlie clayey tuffaceous rocks. May include some deposits of late Pliocene age

Lithology: landslide

Predominantly tuffaceous facies of Clarno Formation (lower Oligocene? and Eocene) (Eocene to Early Oligocene) at surface, covers 8 % of this area

Mapped separately by Swanson (1969a) in the Ochoco and Maury Mountains of the Blue Mountains Province

Sedimentary rocks (Cretaceous) (Cretaceous) at surface, covers 7 % of this area

Marine graywacke, subgraywacke, conglomerate, and shale. Pebbles and cobbles in conglomerate are well rounded volcanic and metavolcanic rocks, low-grade metasedimentary rocks, quartzite, chert, and minor silicic and intermediate plutonic rocks. Shales are gray to black and are fissile to blocky. Sandstones commonly display graded bedding; conglomerate beds are commonly thick and poorly bedded. Shales, near Mitchell, have yielded latest (Early Cretaceous (Albian) fossils; some earliest Late Cretaceous (Cenomanian) fossils occur in beds southeast of Mitchell (D.L. Jones, oral Commun., 1972). Includes Hudspeth and Gable Creek Formations (OR049), Bernard Formation (OR028), and Cretaceous sedimentary rocks (OR008)

Columbia River Basalt Group and related flows (Miocene) (Miocene) at surface, covers 3 % of this area

Subaerial basalt and minor andesite lava flows and flow breccia; submarine palagonitic tuff and pillow complexes of the Columbia River Basalt Group (Swanson and others, 1979); locally includes invasive basalt flows. Flows locally grade laterally into subaqueous pillow-palagonite complexes and bedded palagonitic tuff and breccia. In places includes tuffaceous sedimentary interbeds. Joints commonly coated with nontronite and other clayey alteration products. Occurs principally in the Willamette Valley from Salem north to the Columbia River, and in the northern Coast Range. Unit includes correlative Cape Foulweather and Depoe Bay Basalts in the Coast Range (Snavely and others, 1973, 1976a, 1976b; Swanson and others, 1979; Wells and others, 1983). In Eastern Oregon, occurs principally in Deschutes-Umatilla Plateau and in the Blue Mountains. K-Ar ages range from about 6 to about 16.5 Ma (McKee and others, 1977; Swanson and others, 1979; Sutter, 1978; Lux, 1982). Locally separated into Tcs, Tcw, Tcg, Tcp, and Tci

Lithology: basalt; andesite

Tuffaceous sedimentary rocks and tuff (Pliocene and Miocene) (Miocene to Pliocene) at surface, covers 3 % of this area

Semiconsolidated to well-consolidated mostly lacustrine tuffaceous sandstone, siltstone, mudstone, concretionary claystone, conglomerate, pumicite, diatomite, air-fall and water-deposited vitric ash, palagonitic tuff and tuff breccia, and fluvial sandstone and conglomerate. Palagonitic tuff and breccia grade laterally into altered and unaltered basalt flows of unit Tob. In places includes layers of fluvial conglomerate and, in parts of the Deschutes-Umatilla Plateau, extensive deposits of fanglomerate composed mostly of Miocene basalt debris and silt. Also includes thin, welded and nonwelded ash-flow tuffs. Vertebrate and plant fossils indicate rocks of unit are mostly of Clarendonian and Hemphillian (late Miocene and Pliocene) age. Potassium-argon ages on interbedded basalt flows and ash-flow tuffs range from about 4 to 10 Ma. Includes the Drewsey Formation of Shotwell and others (1963); sedimentary parts of the Rattlesnake Formation of Brown and Thayer (1966); an interstratified ash-flow tuff has been radiometrically dated by potassium-argon methods at about 6.6 Ma (see Fiebelkorn and others, 1983); Bully Creek Formation of Kittleman and others (1967); Dalles Formation of Newcomb (1966, 1969); Shutler Formation of Hodge (1932), McKay beds of Hogenson (1964) and Newcomb (1966) (see also Shotwell, 1956); Kern Basin Formation of Corcoran and others (1962); Rome beds of Baldwin (1976); parts of the (now obsolete) Danforth Formation of Piper and others (1939), Idaho Group of Malde and Powers (1962), Thousand Creek Beds of Merriam (1910); the Madras (or Deschutes) Formation, the "Simtustus formation" of Smith (1984), and the Yonna Formation (Newcomb, 1958). In areas west of Cascade crest, includes the Sandy River Mudstone and the Troutdale Formation of Trimble (1963) and the lower Pliocene Helvetia Formation of Schlicker and Deacon (1967)

Alluvial deposits (Holocene) (Holocene) at surface, covers 2 % of this area

Sand, gravel, and silt forming flood plains and filling channels of present streams. In places includes talus and slope wash. Locally includes soils containing abundant organic material, and thin peat beds

Lithology: sand; gravel; silt; peat

Grande Ronde Basalt (middle and lower Miocene) (Early to Middle Miocene) at surface, covers 1 % of this area

Flows of dark-gray to black, aphyric tholeiitic basalt, including both high- and low-Mg chemical types (Swanson and others, 1979). Potassium-argon ages mostly in the range of 15 to 17 Ma (Lux, 1982; Watkins and Baksi, 1974; Fiebelkorn and others, 1983)

Lithology: basalt

Mafic vent and intrusive rocks (Eocene?) (Eocene) at surface, covers 0.6 % of this area

Mostly plugs, dikes, and irregular intrusive bodies of basaltic andesite and porphyritic hornblende or pyroxene andesite. Represents some of vents for unit Tca and possibly for unit Tas

Lithology: andesite; basalt

Rhyolite and dacite domes and flows and small hypabyssal intrusive bodies (Miocene to upper Eocene?) (Late Eocene to Miocene) at surface, covers 0.3 % of this area

Mostly light-gray to red, dense, flow-banded, nonporphyritic and porphyritic rhyolite and dacite in nested domes, small intrusive bodies, and related flows. Includes some near-vent breccias, pumice-lapilli tuffs, and coarse pumicites. Commonly associated with mercury mineralization. Includes several small hypabyssal intrusions of diorite, granodiorite, and quartz monzonite exposed in Paisley Hills of Lake County (Muntzert, 1969; Muntzert and Field, 1968). In many places represents vents for lava flows and tuff of unit Tsf

Lithology: rhyolite; dacite; tuff

Sedimentary and volcanic rocks, partly metamorphosed (Paleozoic) (Paleozoic) at surface, covers 0.2 % of this area

Undifferentiated sedimentary and volcanic rocks some of which are highly deformed and locally metamorphosed to amphibolite and schist. Occurs mostly in Strawberry and Aldrich Mountains of the Blue Mountains province. Includes undivided Paleozoic rocks and Paleozoic volcanic rocks of Brown and Thayer (1966) and Dixie Butte Meta-andesite of Brooks and others (1984)

Tuffaceous sedimentary rocks, tuffs, pumicites, and silicic flows (Miocene) (Miocene) at surface, covers 0.2 % of this area

Moderately well indurated lacustrine and fluvial (flood-plain) deposits of tuff, pumicite, palagonite tuff, and lesser siltstone, arkosic sandstone, and pebble and cobble conglomerate. Locally contains some lignite beds. Former glass in silicic vitroclastic debris commonly crystallized and altered to secondary silica minerals, alkali feldspar, zeolites, and clay minerals. Contains some welded and nonwelded ash-flow tuffs, and minor rhyolite flows. Widespread and abundant vertebrate fossils and minor plant fossils indicate that most of unit is of middle Miocene (Barstovian) age; parts of unit between Goose Lake and Warner Valley may include rocks of early Miocene age. Locally interlayered with and locally overlies basalt and andesite flows of unit Tmb. Overlies and locally interfingers with Picture Gorge Basalt (Thayer and Brown, 1966) and with Miocene basalt south of Prineville. Includes Mascall Formation of Merriam (1901), Sucker (Succor) Creek Formation of Corcoran and others (1962) and Kittleman and others (1967), Drip Spring Formation of Kittleman and others (1965, 1967), Trout Creek Formation of Smith (1926), and "rocks of Miocene age" of Malde and Powers (1962) in the southern Owyhee Upland province. In southeast Oregon, some of these rocks represent caldera and moat-fill deposits

Sedimentary and volcanic rocks, partly metamorphosed (Permian and Permian?) (Permian) at surface, covers 0.2 % of this area

Epiclastic and volcaniclastic rocks, chert, limestone, and lava flows of mid- or Early Permian(?) age that are moderately to intensely metamorphosed. Includes part of Hunsaker Creek Formation of Vallier (1977), in the eastern Blue Mountains province, composed mostly of keratophyre flows, keratophyric volcaniclastic rocks and minor spilite, mudstone, and limestone. In Wheeler County, includes phyllite, chert, and fusulinid-bearing crystalline limestone of probable Early Permian (Wolfcampian?) age (Oles and Enlows, 1971), associated with phyllite, chlorite, and muscovite schist, and lawsonite-crossite blueschist (Swanson, 1969b)

Basalt and andesite (Miocene) (Miocene) at surface, covers 0.2 % of this area

Lava flows and breccia of aphyric and plagioclase porphyritic basalt and aphyric andesite; locally includes flow breccia, peperite, some palagonite tuff and breccia, and minor silicic ash-flow tuff and interbeds of tuffaceous sedimentary rocks. In Basin and Range and Owyhee Upland provinces unit grades upward into more silicic, andesitic, and quartz latitic flows and flow breccia, as well as some interbedded tuffs and ash-flow tuffs; also in this region includes aphyric and highly porphyritic, plagioclase-rich basalt. Interfingers with and grades laterally into units Tit and Tts. Commonly contains montmorillonite clays, zeolites, calcite, and secondary silica minerals as alteration products on fractures and in pore spaces. Age, mostly middle Miocene, but includes some rocks of early Miocene age based on vertebrate fossils from related sedimentary units and on potassium-argon ages that range from about 13 Ma to about 19 Ma; most isotopic ages are about 13 to 16 Ma. Includes Steens Basalt (Steens Mountain Basalt of Fuller, 1931) Owyhee Basalt of Corcoran and others (1962) and Kittleman and others (1967), Hunter Creek Basalt and "unnamed igneous complex" of Kittleman and others (1965, 1967), and flows of Prineville chemical type (Uppuluri, 1974; Swanson and others, 1979), which previously were considered part of the Columbia River Basalt Group (Swanson, 1969a)

Thin flows of basalt and andesite (Late Eocene to Early Miocene) at surface, covers 0.2 % of this area

Part of unit Tsfj; exact age uncertain

Lithology: basalt; andesite

Fanglomerate (Holocene? and Pleistocene) (Pleistocene to Holocene) at surface, covers 0.2 % of this area

Poorly sorted and poorly stratified alluvial fan debris, slope wash, colluvium, and talus; composed mostly of silt and fragments of basalt, basaltic andesite, and andesite. In places includes small areas of pediment gravels and colluvium

Gabbroic rocks (Paleozoic to Triassic) at surface, covers < 0.1 % of this area

Most gabbro genetically related to ultramafic rocks, but some probably derived from metamorphism of Triassic and older volcanic rocks

Lithology: gabbro

Volcanic rocks (Triassic and Permian) (Permian to Triassic) at surface, covers < 0.1 % of this area

Massive flows of porphyritic meta-andesite, metabasalt, spilite, and keratophyre, volcanic breccia, and subordinate amounts of fine-grained volcaniclastic rocks. In eastern Oregon probably mostly Late Triassic in age, but includes some Permian rocks (OR084). Includes Clover Creek Greenstone (OR035), Gold Creek greenstone (informal name; OR029), and greenstone of Ashley (OR081)

Rhyolitic tuff, tuffaceous sedimentary rocks, and lava flows (lower Miocene, Oligocene, and uppermost Eocene?) (Late Eocene to Early Miocene) at surface, covers < 0.1 % of this area

Rhyolitic to dacitic varicolored bedded tuff, lapilli tuff, and fine- to medium-grained tuffaceous sedimentary rocks with interstratified welded and nonwelded ash-flow tuff and interbedded basalt and andesite flows. Also includes minor rhyolite and dacite flows and domes. Glass in tuff and tuffaceous sedimentary rocks is commonly altered to zeolites, clay minerals, and small amounts of opal, chalcedony, orthoclase, and calcite. Fossil plants and vertebrates indicate an Oligocene and Miocene age. Locally a late Hemingfordian age indicated by mammalian fauna (Woodburn and Robinson, 1977). May include some rocks of middle Miocene age in the area west and northwest of Lakeview. Potassium-argon ages on rocks from unit range from about 36 Ma (Swanson and Robinson, 1968) to about 20 Ma. Includes Pike Creek Formation of Walker and Repenning (1965), originally identified as Pike Creek Volcanic Series by Fuller (1931), and unnamed volcanic and volcaniclastic rocks of southern Lake County, some of which have been correlated with the Miocene and Oligocene Cedarville Formation of northeastern California

Lithology: tuff; basalt; andesite

Sedimentary rocks, partly metamorphosed (Triassic and Paleozoic) (Paleozoic to Triassic) at surface, covers < 0.1 % of this area

Poorly bedded argillite, chert, phyllite, phyllitic quartzite, calc-phyllite, impure limestone, and marble. In places rocks are strongly foliated. Sparse fossils (Fusilina, corals, and crinoids) indicate that the unit includes rocks of Leonardian, Ochoan, and Late Triassic age (OR084). Includes Elkhorn Ridge Argillite (OR035), Mesozoic and Paleozoic sedimentary rocks of Brown and Thayer (OR008), and the Permian Coyote Butte Formation (OR085). In Baker County includes "sedimentary and volcanic rocks" (MzPza) of Brooks and others (OR039) and metamorphosed sedimentary and minor volcaniclastic rocks containing mineral assemblages indicative of quartz-albite-muscovite-chlorite subfacies and quartz-albite-epidote-biotite subfacies of the greenschist facies. In Jefferson and Wasco Counties north of Prineville, includes "phyllite and sedimentary rocks " of Swanson (OR031). Includes part of the Burnt River Schist (OR035; OR081) and volcaniclastic facies of several metavolcanic units of Permian and Late Triassic age. Not on State map (OR001) in area of La Grande 100K quadrangle, butmapped in OR291 as Elkhorn Ridge Argillite (Triassic Permian, Pennsylvannian, and Devonian?)

Intrusive rocks (Cretaceous and Jurassic) (Jurassic to Cretaceous) at surface, covers < 0.1 % of this area

Hornblende and biotite quartz diorite (tonalite), trondhjemite, granodiorite, and small amounts of norite, in batholithic masses and large dikelike bodies. Includes Bald Mountain Tonalite and Anthony Lake Granodiorite of Taubeneck (1957), tonalite and trondhjemite of Wallowa batholith and Cornucopia stock (Taubeneck, 1964; Nolf, 1966), quartz diorite intrusion in the Snake River area (Morrison, 1963), quartz diorite and minor other intrusive rocks in the Caviness quadrangle (Wolff, 1965), quartz diorite northeast of John Day and southeast of Ironside Mountain (Thayer and Brown, 1964), quartz diorite in the Sparta and Durkee quadrangles (Prostka, 1962; 1967), and granodiorite and related rocks of the Pueblo Mountains (Roback and others, 1987). Rubidium-strontium and potassium-argon ages indicate an age range from about 94 to 160 Ma (Taubeneck, 1963; Thayer and Brown, 1964; Armstrong and others, 1976)

Open Water (Holocene) at surface, covers < 0.1 % of this area


Lithology: water

Basalt and basaltic andesite (Holocene and Pleistocene) (Pleistocene to Holocene) at surface, covers < 0.1 % of this area

Thin flows of aphyric and porphyritic basalt and basaltic andesite, and open-textured (dikytaxitic), generally nonporphyritic, subophitic olivine basalt that commonly is highly feldspathic. Also includes some dissected intracanyon flows of porphyritic basalt and related vent complexes. Pressure ridges and tumuli on upper surfaces well preserved. Occurs principally along crest of Cascade Range; also in areas near and east of Newberry volcano, along southeast margin of Harney Basin, and in Rome Basin. Older than Mazama ash deposits (Qma, Qmp; approximately 6,800 yr old; 14C)

Lithology: basalt