Skip to main content

Geologic units in Yamhill county, Oregon

Tuffaceous siltstone and sandstone (upper and middle Eocene) (Middle Eocene to Late Eocene) at surface, covers 39 % of this area

Thick- to thin-bedded marine tuffaceous mudstone, siltstone, and sandstone; fine to coarse grained. Contains calcareous concretions and, in places, is carbonaceous and micaceous. Includes the Nestucca Formation, which contains a foraminiferal assemblage assigned to the upper Narizian and lowermost Refugian Stages (Snavely and others, 1969; McKeel, 1980); the Spencer Formation, which contains Narizian Stage foraminifers; the Keasey Formation, which contains upper Narizian and lower Refugian Stage foraminifers (McDougall, 1975, 1980); the Coaledo and Bateman Formations of Baldwin (1974); upper Eocene sandstone of Bela (1981); and the Sager Creek formation (informal name) of Niem and Niem (1985)

Yamhill Formation and related rocks (upper and middle Eocene) (Middle Eocene to Late Eocene) at surface, covers 16 % of this area

Massive to thin-bedded concretionary marine siltstone and thin interbeds of arkosic, glauconitic, and basaltic sandstone; locally contains interlayered basalt lava flows and lapilli tuff. Foraminiferal assemblages in siltstone referred to the Ulatisian and lower Narizian Stages (Snavely and others, 1969; McKeel, 1980) Includes the Elkton Formation of Baldwin (1974; also see Beaulieu and Hughes, 1975), which consists of thin-bedded siltstone and minor sandstone interbeds

Mafic intrusions (Oligocene) (Oligocene) at surface, covers 15 % of this area

Sheets, sills, and dikes of massive granophyric ferrogabbro; some bodies strongly differentiated and include pegmatitic gabbro, ferrogranophyre, and granophyre (MacLeod, 1981). Plagioclase and amphibole from unit have yielded K-Ar ages of about 30 Ma (Snavely and others, 1976a)

Lithology: gabbro; granitoid

Alluvial deposits (Holocene) (Holocene) at surface, covers 6 % of this area

Sand, gravel, and silt forming flood plains and filling channels of present streams. In places includes talus and slope wash. Locally includes soils containing abundant organic material, and thin peat beds

Lithology: sand; gravel; silt; peat

Siletz River Volcanics and related rocks (middle and lower Eocene and Paleocene) (Paleocene to Middle Eocene) at surface, covers 5 % of this area

Aphanitic to porphyritic, vesicular pillow flows, tuff-breccias, massive lava flows and sills of tholeiitic and alkalic basalt. Upper part of sequence contains numerous interbeds of basaltic siltstone and sandstone, basaltic tuff, and locally derived basalt conglomerate. Rocks of unit pervasively zeolitized and veined with calcite. Most of these rocks are of marine origin and have been interpreted as oceanic crust and seamounts (Snavely and others, 1968). Foraminiferal assemblages referred to the Ulatisian and Penutian Stages (Snavely and others, 1969); K-Ar ages range from 50.7 +/- 3.1 to 58.1 +/- 1.5 Ma (Duncan, 1982); includes the lower part of the Roseburg Formation of Baldwin (1974), which has yielded K-Ar ages as old as 62 Ma

Grande Ronde Basalt (middle and lower Miocene) (Early to Middle Miocene) at surface, covers 5 % of this area

Flows of dark-gray to black, aphyric tholeiitic basalt, including both high- and low-Mg chemical types (Swanson and others, 1979). Potassium-argon ages mostly in the range of 15 to 17 Ma (Lux, 1982; Watkins and Baksi, 1974; Fiebelkorn and others, 1983)

Lithology: basalt

Sedimentary rocks (Oligocene and upper Eocene) (Late Eocene to Oligocene) at surface, covers 4 % of this area

Marine shale siltstone, sandstone, and conglomerate, in places partly composed of tuffaceous and basaltic debris; interbeds of arkosic, glauconitic, and quartzose sandstone. Foraminifers are referable to the Refugian and Zemorrian Stages (see marine sedimentary rocks-units Toes and Toem-of Wells and others, 1983). Includes Bastendorff Formation of Baldwin (1974)

Tyee Formation (middle Eocene) (Middle Eocene) at surface, covers 2 % of this area

Very thick sequence of rhymically bedded, medium- to fine-grained micaceous, feldspathic, lithic, or arkosic marine sandstone and micaceous carbonaceous siltstone; contains minor interbeds of dacite tuff in upper part. Foraminiferal fauna are referred to the Ulatisian Stage (Snavely and others, 1964). Groove and flute casts indicate deposition by north-flowing turbidity currents (Snavely and others, 1964), but probable provenance of unit is southwest Idaho (Heller and others, 1985)

Lithology: sandstone; siltstone; tuff

Lacustrine and fluvial sedimentary rocks (Pleistocene) (Pleistocene) at surface, covers 2 % of this area

Unconsolidated to semiconsolidated lacustrine clay, silt, sand, and gravel; in places includes mudflow and fluvial deposits and discontinuous layers of peat. Includes older alluvium and related deposits of Piper (1942), Willamette Silt (Allison, 1953; Wells and Peck, 1961), alluvial silt, sand, and gravel that form terrace deposits of Wells and others (1983), and Gresham and Estacada Formations of Trimble (1963). Includes deltaic gravel and sand and gravel bars, in pluvial lake basins in southeastern part of map area. In Rome Basin, includes discontinuous layers of poorly consolidated conglomerate characterized by well-rounded, commonly polished pebbles of chert and pebbles and cobbles of quartzite. In places contains mollusks or vertebrate fossils indicating Pleistocene age; mostly deposits of late Pleistocene age, but locally includes some deposits of early Holocene age. Includes Touchet Beds of Flint (1938), deposits of valley terraces of Newcomb (1965), and, in southeast Oregon, basin-filling deposits that incorporate Mazama ash deposits (Qma, Qmp) in the youngest layers

Lithology: clay or mud; silt; sand; gravel

Landslide and debris-flow deposits (Holocene and Pleistocene) (Pleistocene to Holocene) at surface, covers 2 % of this area

Unstratified mixtures of fragments of adjacent bedrock. Locally includes slope wash and colluvium. Largest slides and debris flows occur where thick sections of basalt and andesite flows overlie clayey tuffaceous rocks. May include some deposits of late Pliocene age

Lithology: landslide

Open Water (Holocene) at surface, covers 0.9 % of this area

water

Lithology: water

Mafic and intermediate intrusive rocks (Miocene) (Miocene) at surface, covers 0.7 % of this area

Dikes, plugs, and sills of basalt, diabase, gabbro, and lesser andesite that fed many of the Miocene basalt and andesite flows in unit Tc. Some intrusions are rootless and are invasive into sedimentary sequences; includes related breccia and peperite. Includes Depoe Bay and Cape Foulweather dikes, sills, and plugs in the Coast Range (Snavely and others, 1976a, b; Wells and others, 1983)

Lithology: gabbro; diabase; diorite

Marine facies (Middle Eocene to Late Eocene) at surface, covers 0.5 % of this area

Basaltic clastic rocks and pillow lavas, locally mapped separately by Wells and others (1983). Foraminiferal assemblages are assigned to the lower part of the Narizian Stage of Mallory (1959); see Wells and others (1983) for summary

Ridge-capping basalt and basaltic andesite (Pliocene and upper Miocene) (Late Miocene to Pliocene) at surface, covers 0.4 % of this area

Flows and flow breccia of basaltic andesite and lesser diktytaxitic to intergranular olivine basalt. Includes some dense, aphyric flows, commonly with either cryptocrystalline or pilotaxitic to trachytic texture, and porphyritic flows with phenocrysts and glomerocrysts of olivine, hypersthene, and labradorite. A few flows contain both hypersthene and calcic augite phenocrysts. Olivine mostly fresh or slightly altered to iddingsite in flows high in section; flows low in section show some alteration to clays (nontronite and saponite), secondary silica minerals, and calcite; pinkish-brown glass in some flows unaltered. Locally includes some andesite and dacite. Some flows of this unit are lithologically similar to flow rocks of the High Cascade volcanic sequence and some are more like flows that in the past have been mapped as part of the Sardine Formation (Peck and others, 1964) and Elk Lake Formation of McBirney and others (1974) and Sutter (1978). Potassium-argon ages of rocks from this unit range from about 4 to 8 or 9 Ma. Includes some rocks formerly mapped as Rhododendron Formation by Peck and others (1964)

Sedimentary rocks (Pleistocene and Pliocene) (Pliocene to Pleistocene) at surface, covers 0.4 % of this area

Semiconsolidated lacustrine and fluvial ashy and palagonitic sedimentary rocks, mostly tuffaceous sandstone and siltstone; locally contains abundant palagonitized basaltic debris and some pebble conglomerate. Includes alluvial gravel and mudflow deposits of Walters Hill and Springwater Formations (Trimble, 1963). In places, grades laterally through palagonite tuff and breccia into basalt flows

Wanapum Basalt (middle Miocene) (Middle Miocene) at surface, covers 0.2 % of this area

Flows of gray to dark-gray, medium-grained, commonly plagioclase porphyritic basalt of Frenchman Springs petrochemical type (Wright and others, 1973). Generally exhibits blocky to platy jointing. Potassium-argon ages mostly about 15 Ma (Lux, 1982; Fiebelkorn and others, 1983)

Lithology: basalt

Tillamook Volcanics (upper and middle Eocene) (Middle Eocene to Late Eocene) at surface, covers 0.1 % of this area

Subaerial basaltic flows and breccia and submarine basaltic breccia, pillow lavas, lapilli and augite-rich tuff with interbeds of basaltic sandstone, siltstone, and conglomerate. Includes some basaltic andesite and, near the top of the sequence, some dacite. Potassium-argon ages on middle and lower parts of sequence range from about 43 to 46 Ma (Magill and others, 1981): one potassium-argon age from dacite near top of sequence is about 40 Ma (see Wells and others, 1983)

Columbia River Basalt Group and related flows (Miocene) (Miocene) at surface, covers < 0.1 % of this area

Subaerial basalt and minor andesite lava flows and flow breccia; submarine palagonitic tuff and pillow complexes of the Columbia River Basalt Group (Swanson and others, 1979); locally includes invasive basalt flows. Flows locally grade laterally into subaqueous pillow-palagonite complexes and bedded palagonitic tuff and breccia. In places includes tuffaceous sedimentary interbeds. Joints commonly coated with nontronite and other clayey alteration products. Occurs principally in the Willamette Valley from Salem north to the Columbia River, and in the northern Coast Range. Unit includes correlative Cape Foulweather and Depoe Bay Basalts in the Coast Range (Snavely and others, 1973, 1976a, 1976b; Swanson and others, 1979; Wells and others, 1983). In Eastern Oregon, occurs principally in Deschutes-Umatilla Plateau and in the Blue Mountains. K-Ar ages range from about 6 to about 16.5 Ma (McKee and others, 1977; Swanson and others, 1979; Sutter, 1978; Lux, 1982). Locally separated into Tcs, Tcw, Tcg, Tcp, and Tci

Lithology: basalt; andesite