Geologic units in Madison county, Virginia

Additional scientific data in this geographic area

Lynchburg Group - Metagraywacke (Proterozoic Z) at surface, covers 16 % of this area

Metagraywacke, quartzose schist, and conglomerate. Graded bedding, cut-and-fill structures, and incomplete Bouma cycles are characteristic; conglomeratic lenses occur throughout the unit. Geophysical signature: Positive magnetic and positive radiometric anomalies. Metagraywacke is interpreted to have been deposited in a series of coalescing submarine fans, with conglomerate deposited in submarine distributary channels developed on the fans (Conley, 1989). The unit as mapped includes in part the Rockfish conglomerate formation, and the Lynchburg gneiss formation (restricted) of Nelson (1962), and is equivalent to Ashe Formation metagraywacke (Zam), on strike to the southwest. The unit has been mapped on a lithologic basis in outliers to the west of the main strike-belt, including parts of the Mechums River formation strike-belt of Gooch (1958) and Nelson (1962).

Porphyoblastic Biotite-Plagioclase Augen Gneiss (Proterozoic Y) at surface, covers 12 % of this area

Mesocratic, medium- to coarse-grained, biotite-rich quartzofeldspathic gneiss con tains prominent subhedral to euhedral monocrystalline feldspar augen. The ratio plagioclase: potassium feldspar may be as high as 10:1; color index ranges from 30 to 50. Apatite, epidote, muscovite, ilmenite, and titanite are ubiquitous accessories. Plagioclase contains abundant prismatic epidote and white mica; ilmenite is rimmed with masses of anhedral titanite; subhedral hornblende and subhedral to euhedral almandine-grossular garnet occur locally. In the vicinity of adjacent charnockite, anhedral actinolitic amphibole pseudomorphs after pyroxene or rims thoroughly uralitized relict pyroxene. Rock fabric is gradational from granofels to mylonite gneiss. Geophysical signature: negative magnetic signature relative to adjacent charnockite. In northern Virginia, this unit strongly resembles prophyroblastic granite gneiss (Ybp); however, the augen in Ybp are more commonly polycrystalline aggregates rather than single-crystal porphyroblasts. This unit is widespread in the central and southeastern Blue Ridge, encompassing a number of lithologically similar metaplutonic entities: the "biotitic facies"of the Roses Mill and Turkey Mountain ferrodiorites of Herz and Force (1987), the Archer Mountain quartz monzonite of Bartholomew and others (1981), biotite granofels and augen gneiss of Evans (1984, 1991), biotite augen gneiss of Conley (1989), and augen-bearing gneiss of Lukert and Halladay (1980), and Lukert and Nuckols (1976). Historically, most workers have interpreted these rocks as Grenville-age plutons in which the present-day biotite-rich mineral assemblage is a primary igneous assemblage that crystallized from a melt (for example, Bartholomew and others, 1981). Herz and Force (1987) and Evans (1991) presented evidence that these biotite gneisses were derived from charnockite plutons by retrograde hydration reactions. Pettingill and others (1984) reported ages of 1009±26 Ma (Rb-Sr whole-rock) and 1004±36 Ma (Sm-Nd whole-rock) for ferrodiorite to quartzmonzonite in the Roseland district. Where this unit has been mapped in the Upperville quadrangle (A.E. Nelson, unpublished data), U-Pb zircon data suggest a crystallization age of 1055±2 Ma (Aleinikoff and others, 1993).

Layered Pyroxene Granulite (Proterozoic Y) at surface, covers 10 % of this area

Medium- to dark greenish-gray, fine- to medium-grained, segregation-layered quartzofeldspathic granulite. Major minerals are quartz, plagioclase, potassium feldspar (includes assemblages with one alkali feldspar), orthopyroxene and clinopyroxene, and magnetite-ilmenite; garnet, hornblende, and reddish-brown biotite are widespread minor constituents. Apatite and zircon are accessory minerals. Color index ranges from 15 to 35. Quartz and feldspars are granoblastic; ferromagnesian minerals define dark layers on the order of 1 to 3 mm thick, giving the rock a characteristic pinstriped appearance. Migmatitic leucosomes locally cut segregation layering. Geophysical signature: positive magnetic anomalies relative to adjacent biotite granulite and layered gneiss (Ygb). This unit pre-dates charnockite, alkali feldspar leucogranite, and other plutonic rocks on basis of cross-cutting relations, and is generally considered pre-Grenville-age country rock that was metamorphosed under granulite-facies metamorphic conditions and intruded by plutonic rocks during the Grenville orogeny. The unit includes Lady Slipper granulite gneiss (1130 Ma, U-Pb zircon, Sinha and Bartholomew, 1984), and Nellysford and Hills Mountain granulite gneisses of Bartholomew and others (1981).

Catoctin Formation - Metabasalt (Proterozoic Z-Cambrian) at surface, covers 9 % of this area

Grayish-green to dark-yellowish-green, fine-grained, schistose chlorite- and actinolite-bearing metabasalt, commonly associated with epidosite segregations. Mineralogy: chlorite + actinolite + albite + epidote + titanite ± quartz + magnetite. Relict clinopyroxene is common; biotite porphyroblasts occur locally in southeastern outcrop belts. Geophysical signature: The Catoctin as a whole has a strong positive magnetic signature. However, between Warrenton and Culpeper the lowest part of the Catoctin, which consists of low-titanium metabasalt and low-titanium metabasalt breccia, is non-magnetic, and displays a strong negative anomaly. Metabasalt (CZc) is by far the most widespread unit comprising 3000 feet or more of section (Gathright and others, 1977). Primary volcanic features are well preserved in many places. In the north west ern outcrop belt, these include vesicles and amygdules, sedimentary dikes, flow-top breccia, and columnar joints (Reed, 1955; Gathright, 1976; Bartholomew, 1977); relict pillow structures have been reported in Catoctin greenstones east of Buena Vista (Spencer and others, 1989). In the southeastern outcrop belt, amygdaloidal metabasalts are common, as are volcanoclastic rocks interbedded with basaltic fl ows (Rossman, 1991). Fragmental zones occur locally between individual lava fl ows; map-scale hyaloclastite pillow breccias occur at three strati raphic levels within the southeastern outcrop belt (CZcb, CZhb, CZlb; Espenshade, 1986; Kline and others, 1990).

Flint Hill Gneiss (Proterozoic Y) at surface, covers 7 % of this area

Flint Hill Gneiss (Lukert and others, 1977). Segregation-layered quartzofeldspathic biotite gneiss contains quartz, plagioclase, microcline, green biotite, ilmenite, and titanite; accessories include epidote, apatite, and zircon. Segregation layering is defined by quartz-feldspar- and biotite-rich domains on the order of a few millimeters thick; migmatitic leucosomes of quartz and alkali feldspar cut segregation layering in places; veins of blue quartz are com mon. This unit is considered correlative with layered biotite granulite and gneiss (Ygb); the Flint Hill has been dated at 1081 Ma (U-Pb zircon; Lukert and others, 1977).

Robertson River Igneous Suite - Hitt Mountain alkali feldspar syenite (Proterozoic Z) at surface, covers 7 % of this area

Light-gray, coarse-grained to locally pegmatitic, inequigranular alkali feldspar syenite composed of microcline mesoperthite, quartz, and saussuritized plagioclase, with lesser hastingsitic amphibole, biotite, allanite, zircon, stilpnomelane, apatite, and rare garnet; locally displays cumulate and pseudocumulate texture. The syenite has been dated at 706± 2 Ma (U-Pb zircon; Tollo and Aleinikoff, in press).

Lynchburg Group; Charlottesville Formation (Proterozoic Z) at surface, covers 5 % of this area

Charlottesville Formation (Nelson, 1962). Coarse-grained to pebbly quartzose metasandstone and quartzite interbedded with laminated micaceous metasiltstone and graphitic phyllite and slate. Sandstone beds are typically amalgamated and massive; grading, horizontal stratification, and complete Bouma sequences are preserved locally (Wehr, 1985; Conley, 1989). The formation includes cross-bedded quartzite, feldspathic metasandstone, and muscovite schist in the upper portion (Conley, 1989; mapped as Swift Run Formation by Nelson, 1962); in the Culpeper area, includes in part the Ball Mountain Formation of Wehr (1985) and Kasselas (1993). The unit contains numerous apparently concordant mafic and ultramafic sills in the lower portion. Southwest of Nelson County, rocks equivalent to the Charlottesville Formation have been mapped as Alligator Back Formation. Outcrop belt is as much as 3.7 miles wide.

Layered Biotite Granulite and Gneiss (Proterozoic Y) at surface, covers 4 % of this area

Leucocratic to mesocratic, segregation-layered quartzofeldspathic granulite and gneiss contain quartz, plagioclase (albite), microcline (includes assemblages with one alkali feldspar), biotite, ilmenite, and titanite; garnet and horn blende are commonly present. Accessory minerals include apatite and zircon. Epidote and white mica are ubiquitous secondary minerals. Relict pyroxene, largely replaced by actinolitic amphibole, occurs locally. Segregation layering is defined by alternating quartzofeldspathic and biotite-rich domains on the order of a few millimeters to centimeters thick. Quartz and feldspar are granoblastic; biotite defines a penetrative schistosity that crosscuts segregation layering. Migmatitic leucosomes composed of alkali feldspar and blue quartz cut segregation layering, and locally define attenuated isoclinal folds. This unit surrounds pods of layered pyroxene granulite (Ypg), and is cut by Grenville-age metaplutonic rocks including porphyroblastic biotite-plagioclase augen gneiss (Ybg) and alkali feldspar granite (Yal). The unit has been correlated with Flint Hill Gneiss (Yfh) (Evans, 1991), and may correlate with Stage Road layered gneiss of Sinha and Bartholomew (1984). These gneisses have been interpreted as derived from layered pyroxene granulite (Ypg) by retrograde hydration reactions (Evans, 1991).

Mylonite, Mylonite Gneiss, and Cataclastic Rocks (Proterozoic - Paleozoic ?) at surface, covers 4 % of this area

Mylonite. Includes protomylonite, mylonite, ultramylonite, and cataclastic rocks. Lithology highly variable, depending on the nature of the parent rock, and on intensive parameters and history of deformation. In most mapped belts of mylonite and cataclastic rock (my), tectonized rocks anastomose around lenses of less-deformed or undeformed rock. In the Blue Ridge, some of these lenses are large enough to show at 1:500,000 scale. In many places mylonitic and cataclastic rocks are gradational into less deformed or undeformed adjacent rocks, and location of contacts between tectonized rocks (my) and adjacent units is approximate or arbitrary. These boundaries are indicated on the map by color-color joins with superimposed shear pattern. Most mapped belts of mylonite represent fault zones with multiple movement histories. In the Blue Ridge, Paleozoic age contractional deformation fabrics are superimposed on Late Precambrian extensional fabrics (Simpson and Kalaghan, 1989; Bailey and Simpson, 1993). Many Piedmont mylonite zones contain dextral-transpressional kinematic indicators that formed during Late Paleozoic collision al tectonics (Bobyarchick and Glover, 1979; Gates and others, 1986). Paleozoic and older faults were reactivated in many places to form extensional faults during the Mesozoic (Bobyarchick and Glover, 1979).

Charnockite (Proterozoic Y) at surface, covers 4 % of this area

Includes dusky-green, mesocratic, coarse- to very-coarse-grained, equigranular to porphyritic, massive to vaguely foliated pyroxene-bearing granite to granodiorite; contains clinopyroxene and orthopyroxene, intermediate-composition plagioclase, potassium feldspar, and blue quartz. Reddish-brown biotite, hornblende, and poikilitic garnet are present locally; accessory minerals include apatite, magnetite-ilmenite, rutile, and zircon. Geophysical signature: charnockite pods in the southeastern Blue Ridge produce a moderate positive magnetic anomaly relative to adjacent biotite gneisses, resulting in spotty magnetic highs. This unit includes a host of plutons that are grouped on the basis of lithology, but are not necessarily consanguineous. These include Pedlar charnockite, dated at 1075 Ma (U-Pb zircon, Sinha and Bartholomew, 1984) and Roses Mill charnockite (Herz and Force, 1987), dated at 1027±101 Ma (Sm-Nd, Pettingill and others, 1984).

Old Rag Granite (Proterozoic Y) at surface, covers 4 % of this area

Old Rag granite (Furcron, 1934). Leucocratic, coarse grained, foliated, alkali feldspar-blue quartz granite contains accessory biotite, muscovite, garnet, magnetite, and zircon; dated at 1115 Ma (U-Pb zircon; Lukert, 1982). Geophysical signature: positive radiometric anomaly.

Metagabbro (Proterozoic Z-Cambrian) at surface, covers 3 % of this area

Dusky-green to black, medium- to coarse-grained, massive to vaguely-foliated amphibolite. Mineralogy: (1) actinolite + chlorite + albite + epidote + quartz + magnetite ± titanite; (2) hornblende + pla gio clase + epidote + magnetite + quartz ± titanite. Geophysical signature: strong positive magnetic anomaly. Metagabbro occurs as dikes that cut Grenville basement and the Lynchburg Group, and as sills occurring primarily in the Charlottesville and Alligator Back Formations in association with ultramafiic rocks. Cross cutting relations imply that these rocks are related to the Catoctin in time. Reed and Morgan (1971) demonstrated on the basis of geochemistry that metadiabase dikes cutting Grenville basement in northern Virginia are feeders to the Catoctin. Metagabbroic dikes in the central Virginia Blue Ridge could represent a deeper level of Catoctin feeder system, although that hypothesis has not been substantiated by field or geochemical study.

Alkali Feldspar Leucogranite (Proterozoic Y) at surface, covers 3 % of this area

Leucocratic, coarse grained to megacrystic, equigranular to porphyritic granite contains white alkali feldspar phenocrysts and interstitial blue quartz, with accessory biotite, pyroxene, and garnet; primary flow-banding is locally delineated by aligned feldspar phenocrysts. Geophysical signature: positive radiometric anomaly. This lithology occurs as dikes and discrete plutons, comprises migmatitic leucosomes within early or pre-Grenville age layered gneisses, and occurs as xenoliths with in some Grenville-age plutonic rocks. This is a lithologic unit that likely includes rocks spanning a range of ages.

Lynchburg Group - Conglomerate and metagraywacke (Proterozoic Z) at surface, covers 2 % of this area

Lynchburg Group - Conglomerate and metagraywacke.

Charnockite Gneiss (Proterozoic Y) at surface, covers 2 % of this area

Leucocratic to mesocratic, coarse grained, porphyritic, pyroxene-bearing granite gneiss; well-developed shear foliation is superimposed on segregation layering defined by quartz-feldspar and mafic-rich domains; includes mylonitic augen gneiss.

Newark Supergroup; Conglomerate, mixed clasts (Upper Triassic) at surface, covers 1 % of this area

Rounded to subangular pebbles, cobbles, and boulders of mixed lithologies including quartz, phyllite, quartzite, gneiss, schist, greenstone, and marble in a matrix of medium- to very-coarse-grained, reddish-brown to gray, locally arkosic, sandstone.

Fauquier Formation - Metasiltstone and phyllite (Proterozoic Z) at surface, covers 1 % of this area

Medium- to dark-gray (fresh), very-pale-orange (weathered), very-fine grained, laminated metasiltstone, composed of alternating silty and micaceous layers on the order of a millimeter to several millimeters thick, and phyllite without discernable layers; major minerals are silt-size quartz and sericite; chlorite, biotite, and magnetite occur locally. Thiesmeyer (1939) described these rocks as "varved slates" interpreted as lacustrine deposits. Espenshade (1986) called this unit metarhythmite. The unit is on strike with, and in part equivalent to the Monumental Mills Formation of Wehr (1985), interpreted as de pos it ed in a delta front-slope environment.

Fauquier Formation - Arkosic metasandstone (Proterozoic Z) at surface, covers 1 % of this area

Dark-gray, medium- to coarse-grained metasandstone contains quartz, plagioclase, perthitic potassium feldspar, and sericite, with minor biotite and epidote; thin beds of pebble conglomerate occur with coarse-grained metasandstone; commonly cross-bedded. Unit comprises the lowest part of the Fauquier; thickness is extremely variable. In the vicinity of Castleton, fine-grained volcanogenic rocks geochemically indistinguishable from nearby Battle Mountain Felsite (Zrbf) are interbedded with the basal Fauquier (Hutson, 1990).

Robertson River Igneous Suite (Proterozoic Z) at surface, covers 1 % of this area

White Oak Alkali Feldspar Granite. Light-gray to gray, coarse-grained, inequigranular alkali feldspar granite composed of microcline microperthite, quartz, and plagioclase, with hastingsitic amphibole, allanite, fluorite, stilpnomelane, zircon, chlorite, and calcite. Unaltered surfaces display pronounced vitreous luster. Granite typically occurs intermixed with light-gray, fine-grained, mineralogically identical alkali feldspar granite that is locally younger. The unit has been dated at 725± 8 Ma (U-Pb zircon; Tollo and Aleinikoff, in press).

Robertson River Igneous Suite - Arrington Mountain alkali feldspar granite (Proterozoic Z) at surface, covers 0.9 % of this area

Light gray, medium-grained, equigranular alkali feldspar granite composed of microcline microperthite, quartz, and plagioclase, with hastingsitic amphibole, biotite, stilpnomelane, allanite, fluorite, zircon, epidote, apatite, rare garnet, and muscovite. The granite is locally intruded by light-gray, fine-grained dikes of mineralogically identical alkali feldspar granite. The unit has been dated at 730± 4 Ma (U-Pb zircon; Tollo and Aleinikoff, in press).

Biotite Granite (Proterozoic Y) at surface, covers 0.6 % of this area

Leucocratic, medium- to coarse grained, gneissic granite; dominantly perthitic Potassium feldspar, plagioclase, and quartz, with minor biotite, muscovite, and ilmenite; accessories include apatite and zircon. Feldspars show alteration to epidote and sericite; gneissic fabric is defined by flatten quartz and feldspars.

Newark Supergroup; Conglomerate, greenstone clasts (Upper Triassic) at surface, covers 0.6 % of this area

Rounded to subrounded pebbles, cobbles, and boulders of predominantly metavolcanic Catoctin greenstone in a matrix of fine- to coarse-grained, silicified, ferruginous-cemented, greenish-gray to dark-green, clayey sandstone.

Lynchburg Group - Graphitic phyllite and metasiltstone (Proterozoic Z) at surface, covers 0.4 % of this area

Black graphite and pyrite-bearing phyllite and slate, with thin interbeds of sericite phyllite, metasiltstone and quartzite. The unit includes the Johnson Mill graphite slate formation of Nelson (1962); thickness is on the order of 100 m.

Two-Mica Granite (Proterozoic Y) at surface, covers 0.4 % of this area

Two-mica granite (Conley, 1989). Coarse-grained, inequigranular muscovite-biotite two-feldspar granite gneiss contains 2-cm clots of biotite and relict orthopyroxene; accessory minerals are epidote, rutile, actinolite, hornblende, and zircon. Unit is considered intrusive into biotite augen gneiss.

Marble (Proterozoic Z) at surface, covers 0.3 % of this area

Includes white and light-gray to grayish-blue, fine-grained dolomitic marble and siliceous marble, dolomitic meta-arkose, dolomitic quartz-muscovite schist, and calcitic marble; may contain quartz, feldspar, muscovite, phlogopite, and tremolite. Marble is poorly exposed in discontinuous lenses either just below the top of the Fauquier Formation laminated metasiltstone. (Zfl ) or just above the base of the Catoctin (CZc); a lense of dolomitic marble occurs within the Swift Run Formation in Loudoun County. Along the Hazel River, a marble clast conglomerate with a biotite-rich feldspathic matrix occurs just below the base of the Catoctin Formation.

Newark Supergroup; Triassic shale and siltstone (Triassic) at surface, covers 0.3 % of this area

Shale, light-greenish gray, light- to dark-gray, carbonaceous, and reddish-brown in cyclic sequences, laminated, silty to sandy, fossiliferous. Siltstone, typically reddish-brown to gray, sandy, micaceous, with minor fine-grained sandstone beds.

Lynchburg Group; Monumental Mills Formation (Proterozoic Z) at surface, covers 0.2 % of this area

Monumental Mills Formation (Wehr, 1985). Lightgray, fine- to very-fine-grained metasandstone characterized by thin planar beds separated by biotite-rich silty partings; and dark-gray laminated siltstone and mudstone containing abundant synsedimentary deformation features including folds, faults, convolute bedding, and erosional-depositional discordances. Mineralogy: quartz + albite + mu covite + biotite + epidote + calcite + chlorite + titanite + magnetite ± garnet ± pyrite; porphyroblastic garnet and biotite are common. The Monumental Mills has been interpreted to represent deposition in a delta front-slope environment (Wehr, 1985).

Fauquier Formation - Meta-arkose and metasiltstone (Proterozoic Z) at surface, covers 0.2 % of this area

Alternating beds of dark-gray, very-fine-grained meta-arkose and metasiltstone; composed dominantly of angular quartz grains, with lesser plagioclase and potassium feldspar, and minor biotite. Crossbedding and graded bedding are present; thickness ranges from 300 to 500 meters.

Robertson River Igneous Suite - Rivanna granite (Proterozoic Z) at surface, covers 0.2 % of this area

White, medium-grained, biotite-, allanite-, fluorite-, and stilpnomelane-bearing granite to alkali feldspar granite; color index less than 5; locally displays miarolitic cavities containing quartz and pyrite. The granite has been dated at 735± 4 Ma (U-Pb zircon; Tollo and Aleinikoff, in press).

Diabase (Jurassic) at surface, covers 0.1 % of this area

Fine- to coarsely-crystalline, subaphanitic or porphyritic with aphanitic margins; dark-gray mosaic of plagioclase laths and clinopyroxene, with some masses characterized by olivine or bronzite, others granophyric. Also occurs as dikes and sills in the Valley and Ridge, Piedmont, and Blue Ridge physiographic provinces.