Geologic units in Martinsville City, Virginia

Fork Mountain Formation (Proterozoic Z-Cambrian) at surface, covers 60 % of this area

Fork Mountain Formation (Conley and Henika, 1973; Conley, 1985). Light- to medium-gray, fine- to medium grained, polydeformed and polymetamorphosed porphyroblastic aluminosilicate-mica schist, interlayered with medium-gray irregularly-layered garnetiferous biotite gneiss, migmatitic in part; calcsilicate granofels; amphibolite; rare white marble; and, coarse calc-quartzite lenses. Complex schistosity, multiple crenulation cleavages, and partly-retrograded, polymetamorphic aluminosilicate and garnet porphyroblasts are diagnostic of Fork Mountain schists. Primary sedimentary structures rarely are preserved. A spectacular polymictic breccia bed that can be traced along strike for several miles within the Fork Mountain near Stuart is a notable exception. Medium- to coarse-granular, blue quartz lenses, angular to rounded inclusions of boudinaged fine-grained, color-laminated, calc-silicate rock, and thick beds of coarse, clast-supported, epidotized lithic breccia are typical of the Fork Mountain biotite gneiss. Prograde regional metamorphic mineral assemblages: (1) quartz + muscovite + biotite + garnet + staurolite + magnetite- ilmenite + rutile; (2) quartz + muscovite + paragonite + plagioclase + garnet + staurolite + sillimanite + magnetite-ilmenite + rutile; (3) quartz + biotite + sillimanite + potassium feldspar + plagioclase + garnet + magnetite-ilmenite; (4) quartz + plagioclase + biotite + muscovite + sillimanite + garnet + tourmaline; (5) quartz + plagioclase + potassium feldspar + biotite + hornblende + epidote + ilmenite; (6) quartz + plagioclase + potassium feldspar + muscovite + biotite + sillimanite + magnetite-ilmenite + garnet + kyanite. Retrograde metamorphic mineral assemblages: (1) quartz + muscovite + chlorite; (2) quartz + muscovite + chloritoid + chlorite; (3) quartz + muscovite + staurolite + chloritoid; (4) quartz + muscovite + kyanite. Contact metamorphic mineral assemblages: (1) andalusite + sillimanite + kyanite + corundum; (2) corundum + spinel + magnetite + kyanite. Geophysical signature: The Fork Mountain has a characteristic "curly maple" pattern on magnetic contour maps. This pattern is the result of isolated concentrations of highly magnetic minerals that produce rounded, high-intensity, positive and negative anomalies. The aluminosilicate-mica schist is the upper part of the Fork Mountain Formation and forms a series of northeastward-trending ridges along the northwest side of the Smith River allochthon. The garnetiferous biotite gneiss is at a lower structural level of the Fork Mountain Formation near Martinsville where lower strata have been intruded by the Martinsville igneous complex, and the remaining metasedimentary rocks contain extensive thermal meta mor phic zones locallized along the intrusive contacts (Conley and Henika, 1973). Biotite gneiss in the Fork Mountain Formation has been interpreted to be a highly metamorphosed diamictite (Rankin, 1975; Conley, 1985; and Pavlides, 1989). At the northeastern limit of the Fork Mountain outcrop belt, in Appomattox and Buckingham counties, the dominant lithologies are polydeformed yellowish-gray chloritoid-chlorite- muscovite quartzose phyllite and quartz-rich mica schist. Tightly-folded, transposed pinstriped segregation layering at a high angle to the penetrative schistosity defined by phyllosilicate minerals is characteristic; polycrystalline quartz-rich boudins are abundant. These rocks are lithologically indistinguishable from those along the highly-tectonized western margin of the metagraywacke, quartzose schist, and melange (CZpm) outcrop belt; current interpretation is that the Fork Mountain is correlative to some degree with CZpm.

Rich Acres Formation (Cambrian) at surface, covers 33 % of this area

Rich Acres Formation (Conley and Henika, 1973; Conley, 1985). Dikes, sills, and irregularly-shaped plutons of dark-greenish-gray, medium-grained, locally porphryitic, biotite-hornblende gabbro. Mineralogy: plagioclase + clinopyroxene + orthopyroxene + hornblende + biotite + magnetite + quartz + rutile + apatite + zircon + epidote + calcite + pyrite + titanite; plagioclase is altered to epidote; pyroxenes are altered to uralite. Outer parts of some plutons are injected with thin veins composed of hornblende + plagioclase, and hornblende + pyroxene + plagiocase, and with quartz-microcline-oligoclase pegmatite. The unit includes small, irregularly-shaped plutons of porphyritic norite composed of 1- to 4-cm orthopyroxene and clinopyroxene and 1-cm plagioclase laths in ophitic texture, hornblende, biotite, and olivine. The Rich Acres is part of the Martinsville igneous complex of Ragland (1974).

Leatherwood Granite (Cambrian) at surface, covers 7 % of this area

Leatherwood Granite (Jonas, 1928; Pegeau, 1932; Conley, 1985). Light-gray, medium- to coarse-grained, porphyritic biotite granite generally shows rapakivi texture. Mineralogy: quartz + potassium feldspar + plagioclase + biotite + muscovite + epidote + apatite + titanite + zircon + mag ne tite. Geophysical signature: positive radiometric, negative magnetic. The major part of the Leatherwood occurs as sheets at the top of the Martinsville igneous complex. Leatherwood Granite and associated Rich Acres gabbro are cut by dikes of dark-gray, coarse-grained, porphyritic olivine norite. The Leatherwood was dated at 450 Ma (U-Pb zircon; Rankin, 1975); 464±20 Ma (Rb-Sr whole-rock, Odom and Russell, 1975); and 516 Ma (U-Pb zircon; Sinha and others, 1989).