Geologic units in Oregon (state in United States)

Additional scientific data in this geographic area

Grande Ronde Basalt (Early to Middle Miocene) at surface, covers 8 % of this area

Flows of dark-gray to black, aphyric tholeiitic basalt, including both high- and low-Mg chemical types (Swanson and others, 1979). Potassium-argon ages mostly in the range of 15 to 17 Ma (Lux, 1982; Watkins and Baksi, 1974; Fiebelkorn and others, 1983)

Lacustrine and fluvial sedimentary rocks (Pleistocene) at surface, covers 6 % of this area

Unconsolidated to semiconsolidated lacustrine clay, silt, sand, and gravel; in places includes mudflow and fluvial deposits and discontinuous layers of peat. Includes older alluvium and related deposits of Piper (1942), Willamette Silt (Allison, 1953; Wells and Peck, 1961), alluvial silt, sand, and gravel that form terrace deposits of Wells and others (1983), and Gresham and Estacada Formations of Trimble (1963). Includes deltaic gravel and sand and gravel bars, in pluvial lake basins in southeastern part of map area. In Rome Basin, includes discontinuous layers of poorly consolidated conglomerate characterized by well-rounded, commonly polished pebbles of chert and pebbles and cobbles of quartzite. In places contains mollusks or vertebrate fossils indicating Pleistocene age; mostly deposits of late Pleistocene age, but locally includes some deposits of early Holocene age. Includes Touchet Beds of Flint (1938), deposits of valley terraces of Newcomb (1965), and, in southeast Oregon, basin-filling deposits that incorporate Mazama ash deposits (Qma, Qmp) in the youngest layers

Olivine basalt (Miocene to Pliocene) at surface, covers 5 % of this area

Thin, commonly open-textured (diktytaxitic), subophitic to intergranular olivine basalt flows, intercalated with and grades laterally through palagonite breccia and tuff into tuffaceous sedimentary rocks (unit Ts). In places includes flows of platy olivine andesite or basaltic andesite. Several potassium-argon ages ranging from about 4 to 7 Ma indicate unit is mostly of early Pliocene and late Miocene age. Includes Shumuray Ranch Basalt and Antelope Flat Basalt of Kittleman and others (1965), Grassy Mountain Basalt of Corcoran and others (1962), Drinkwater Basalt of Bowen and others (1963), basalt formerly assigned to Danforth Formation by Piper and others (1939) (see Walker, 1979), Hayes Butte Basalt of Hampton (1964), Pliocene and upper Miocene basalt flows capping and interstratified with the Madras (or Deschutes) Formation, and basalt flows interstratified in the Dalles Formation of Newcomb (1966; 1969)

Tuffaceous sedimentary rocks and tuff (Miocene to Pliocene) at surface, covers 5 % of this area

Semiconsolidated to well-consolidated mostly lacustrine tuffaceous sandstone, siltstone, mudstone, concretionary claystone, conglomerate, pumicite, diatomite, air-fall and water-deposited vitric ash, palagonitic tuff and tuff breccia, and fluvial sandstone and conglomerate. Palagonitic tuff and breccia grade laterally into altered and unaltered basalt flows of unit Tob. In places includes layers of fluvial conglomerate and, in parts of the Deschutes-Umatilla Plateau, extensive deposits of fanglomerate composed mostly of Miocene basalt debris and silt. Also includes thin, welded and nonwelded ash-flow tuffs. Vertebrate and plant fossils indicate rocks of unit are mostly of Clarendonian and Hemphillian (late Miocene and Pliocene) age. Potassium-argon ages on interbedded basalt flows and ash-flow tuffs range from about 4 to 10 Ma. Includes the Drewsey Formation of Shotwell and others (1963); sedimentary parts of the Rattlesnake Formation of Brown and Thayer (1966); an interstratified ash-flow tuff has been radiometrically dated by potassium-argon methods at about 6.6 Ma (see Fiebelkorn and others, 1983); Bully Creek Formation of Kittleman and others (1967); Dalles Formation of Newcomb (1966, 1969); Shutler Formation of Hodge (1932), McKay beds of Hogenson (1964) and Newcomb (1966) (see also Shotwell, 1956); Kern Basin Formation of Corcoran and others (1962); Rome beds of Baldwin (1976); parts of the (now obsolete) Danforth Formation of Piper and others (1939), Idaho Group of Malde and Powers (1962), Thousand Creek Beds of Merriam (1910); the Madras (or Deschutes) Formation, the "Simtustus formation" of Smith (1984), and the Yonna Formation (Newcomb, 1958). In areas west of Cascade crest, includes the Sandy River Mudstone and the Troutdale Formation of Trimble (1963) and the lower Pliocene Helvetia Formation of Schlicker and Deacon (1967)

Alluvial deposits (Holocene) at surface, covers 4 % of this area

Sand, gravel, and silt forming flood plains and filling channels of present streams. In places includes talus and slope wash. Locally includes soils containing abundant organic material, and thin peat beds

Basalt and andesite (Miocene) at surface, covers 4 % of this area

Lava flows and breccia of aphyric and plagioclase porphyritic basalt and aphyric andesite; locally includes flow breccia, peperite, some palagonite tuff and breccia, and minor silicic ash-flow tuff and interbeds of tuffaceous sedimentary rocks. In Basin and Range and Owyhee Upland provinces unit grades upward into more silicic, andesitic, and quartz latitic flows and flow breccia, as well as some interbedded tuffs and ash-flow tuffs; also in this region includes aphyric and highly porphyritic, plagioclase-rich basalt. Interfingers with and grades laterally into units Tit and Tts. Commonly contains montmorillonite clays, zeolites, calcite, and secondary silica minerals as alteration products on fractures and in pore spaces. Age, mostly middle Miocene, but includes some rocks of early Miocene age based on vertebrate fossils from related sedimentary units and on potassium-argon ages that range from about 13 Ma to about 19 Ma; most isotopic ages are about 13 to 16 Ma. Includes Steens Basalt (Steens Mountain Basalt of Fuller, 1931) Owyhee Basalt of Corcoran and others (1962) and Kittleman and others (1967), Hunter Creek Basalt and "unnamed igneous complex" of Kittleman and others (1965, 1967), and flows of Prineville chemical type (Uppuluri, 1974; Swanson and others, 1979), which previously were considered part of the Columbia River Basalt Group (Swanson, 1969a)

Tyee Formation (Middle Eocene) at surface, covers 4 % of this area

Very thick sequence of rhymically bedded, medium- to fine-grained micaceous, feldspathic, lithic, or arkosic marine sandstone and micaceous carbonaceous siltstone; contains minor interbeds of dacite tuff in upper part. Foraminiferal fauna are referred to the Ulatisian Stage (Snavely and others, 1964). Groove and flute casts indicate deposition by north-flowing turbidity currents (Snavely and others, 1964), but probable provenance of unit is southwest Idaho (Heller and others, 1985)

Silicic ash-flow tuff (Late Miocene to Early Pliocene) at surface, covers 3 % of this area

Ash-flow tuff and associated pumiceous air-fall tuff mostly of rhyolitic and rhyodacitic composition; includes minor tuffaceous sedimentary rocks. Grades laterally through less-densely welded tuff to nonwelded ash-flow tuff and interlayered tuffaceous sediments of unit Ts. Potassium-argon ages (Greene and others, 1972; Parker and Armstrong, 1972; Walker, 1979; McKee and others, 1976) on several different ash-flow tuffs included in unit range from about 4 to 10 Ma; although most ages are in the range of 6 to 9 Ma. Includes the Devine Canyon, Prater Creek, and Rattlesnake Ash-flow Tuffs (Walker, 1979), originally considered a part of the (now obsolete) Danforth Formation of Piper and others (1939), and the Rattlesnake Formation and the volcanic and fluvial deposits (undivided) and marginal facies of the Columbia River Group (undivided) of Brown and Thayer (1966). Also includes the welded soda--rhyolite tuff breccia of Dickinson and Vigrass (1965) in the Suplee-Izee area, the upper Miocene or lower Pliocene welded tuff of Prostka (1962; 1967) in the Baker area. "Welded ash-flow tuff" of Swanson (1969a) and the Pliocene Peyerl Tuff (Hampton, 1964) west of Fort Rock Valley, dated at about 4.5 Ma (McKee and others, 1976)

Basalt (Middle to Late Miocene) at surface, covers 3 % of this area

Basalt flows, flow breccia, and basaltic peperite; minor andesite flows; some interbeds of tuff and tuffaceous sedimentary rocks. Basalt is aphyric to moderately porphyritic with phenocrysts of plagioclase and olivine and exhibits both subophitic and diktytaxitic textures. Includes Picture Rock Basalt of Hampton (1964), radiometrically dated by potassium-argon methods as middle(?) and late Miocene in age (see Fiebelkorn and others, 1983), flows of Deer Butte Formation of Kittleman and others (1967), and extensive unnamed flow sequences in the Basin-Range and Owyhee Upland Provinces of southern Lake, Harney, and Malheur Counties that are younger than Steens Basalt, dated at about 15 Ma (Baksi and others, 1967) and the Owyhee Basalt, dated at about 14 Ma (Bottomley and York, 1976; see also Fiebelkorn and others, 1983), and older than 7 or 8 Ma. Partly coeval with the Saddle Mountains Basalt of the Columbia River Basalt Group (Swanson and others, 1979)

Picture Gorge Basalt (Early to Middle Miocene) at surface, covers 3 % of this area

Flows of aphyric and plagioclase porphyritic flood basalt. Potassium-argon ages mostly 15.0 to 16.4 Ma (Watkins and Baksi, 1974; Fiebelkorn and others, 1983)

Clastic rocks and andesite flows (Paleocene to Early Oligocene) at surface, covers 2 % of this area

Mostly andesitic lava flows, domes, breccia, and small intrusive masses and lesser basaltic to rhyolitic rocks; interlayered saprolite, bedded volcaniclastic and epiclastic mudstone, claystone, siltstone, sandstone, conglomerate, and mudflow (lahar) deposits. Mostly consists of Clarno Formation of central Oregon and unnamed rocks of Basin and Range Province in south-central Oregon. Fossil plants and vertebrates in these rocks are Eocene in age. Andesite and basalt lava flows are typically slightly altered; most glass is devitrified and altered to clay minerals, zeolites, and secondary feldspar. Reliable K-Ar ages of rocks from unit range from about 54 Ma to about 37 Ma (Evernden and James, 1964; Fiebelkorn and others, 1983). A number of K-Ar ages on rocks shown on source maps as part of the Clarno Formation are in the range of about 36 to 19 Ma (Fiebelkorn and others, 1983). Although these rocks are lithologically similar to, but generally less altered than, rocks of the Clarno Formation, they are coeval with the John Day Formation. Most of these enigmatic rocks of Oligocene and early Miocene age are included in unit Tas. At base of unit in Blue Mountains Province, locally includes quartzose and feldspathic sandstone, siltstone, and shale largely of granitic or metamorphic provenance; fossil plants in these sedimentary rocks indicate an early Eocene or Paleocene age

Wanapum Basalt (Middle Miocene) at surface, covers 2 % of this area

Flows of gray to dark-gray, medium-grained, commonly plagioclase porphyritic basalt of Frenchman Springs petrochemical type (Wright and others, 1973). Generally exhibits blocky to platy jointing. Potassium-argon ages mostly about 15 Ma (Lux, 1982; Fiebelkorn and others, 1983)

Undifferentiated tuffaceous sedimentary rocks, tuffs, and basalt (Oligocene to Miocene) at surface, covers 2 % of this area

Heterogeneous assemblage of continental, largely volcanogenic deposits of basalt and basaltic andesite, including flows and breccia, complexly interstratified with epiclastic and volcaniclastic deposits of basaltic to rhyodacitic composition. Includes extensive rhyodacitic to andesitic ash-flow and air-fall tuffs, abundant lapilli tuff and tuff breccia, andesitic to dacitic mudflow (lahar) deposits, poorly bedded to well-bedded, fine- to coarse-grained tuffaceous sedimentary rocks, and volcanic conglomerate. Originally included in Little Butte Volcanic Series (Peck and others, 1964); includes Mehama Volcanics and Breitenbush Tuffs or Series of Thayer (1933, 1936, 1939), Breitenbush Formation of Hammond and others (1982), Mehama Formation of Eubanks (1960), and Molalla Formation of Miller and Orr (1984a). In Columbia River Gorge, includes Miocene and older rocks previously assigned to the Skamania Volcanic Series (Trimble, 1963), or to the Eagle Creek Formation (Waters, 1973). Lower parts of unit exhibit low-grade metamorphism with primary constituents altered to clay minerals, calcite, zeolites (stilbite, laumontite, heulandite), and secondary silica minerals. In contact aureoles adjacent to stocks and larger dikes of granitic and dioritic composition or in areas of andesitic dike swarms, both wallrocks and intrusions are pervasively propylitized; locally rocks also have been subjected to potassic alteration. Epiclastic part of assemblage locally contains fossil plants assigned to the Angoonian Stage (Wolfe, 1981) or of Oligocene age. A regionally extensive biotite-quartz rhyodacite ash-flow tuff, the ash-flow tuff of Bond Creek of Smith and others (1982), is exposed in southern part of Western Cascade Range near and at base of unit. A K-Ar age of 34.9 Ma was determined on biotite from the tuff (Smith, 1980). Ash-flow tuffs, higher in the section and in the same area, have been radiometrically dated at 22 to 32 Ma by potassium-argon methods (J.G. Smith, unpublished data; Evernden and James, 1964; Fiebelkorn and others, 1983). In the central part of the Western Cascade Range, the unit has yielded a number of K-Ar ages in the range of about 32 to 19 Ma (Verplanck, 1985, p. 53-54). A fission-track age of 23.8 ñ 1.4 Ma was obtained on a red, crystal-rich ash-flow tuff (J.A. Vance, oral communication, 1983) collected at an elevation of about 3,000 ft on U.S. Highway 20 west-southwest of Echo Mountain. Most ages from basalt and basaltic andesite lava flows are in the range of about 35 to 18 Ma. Locally intruded by small stocks of granitoid rocks and by dikes, sills, plugs, and invasive flows of basaltic andesite and basalt; in many places, the intrusions are indistinguishable from poorly exposed interbedded lava flows; K-Ar ages on several of the mafic intrusions or invasive flows are about 27 to 31 Ma. In places subdivided into Tus, Tut, and Tub

Basalt (Pliocene to Pleistocene) at surface, covers 2 % of this area

Thin flows and minor flow breccia of open--textured (diktytaxitic) olivine basalt in southeastern part of map area. Locally contains thin interbeds of sedimentary rocks. Grades laterally through palagonite tuff and breccia into sedimentary rocks (unit QTs)

Basalt and basaltic andesite (Pleistocene to Holocene) at surface, covers 2 % of this area

Thin flows of aphyric and porphyritic basalt and basaltic andesite, and open-textured (dikytaxitic), generally nonporphyritic, subophitic olivine basalt that commonly is highly feldspathic. Also includes some dissected intracanyon flows of porphyritic basalt and related vent complexes. Pressure ridges and tumuli on upper surfaces well preserved. Occurs principally along crest of Cascade Range; also in areas near and east of Newberry volcano, along southeast margin of Harney Basin, and in Rome Basin. Older than Mazama ash deposits (Qma, Qmp; approximately 6,800 yr old; 14C)

Basalt and basaltic andesite (Pliocene to Pleistocene) at surface, covers 2 % of this area

Flows, flow breccia, and pyroclastic deposits. Flows are aphanitic to finely crystalline, commonly diktytaxitic, and aphyric to porphyritic. Textures are mostly intergranular grading to intersertal; some andesite flows are finely trachytic and a few basalt flows are subophitic. Phenocrysts, mostly unaltered, include bytownite and labradorite, olivine, calcic augite, and hypersthene. Flows and breccia form shields, lava cones, and valley fill; in places greatly dissected and modified by fluvial erosion. Includes Boring Lava of Trimble (1963) and Hampton (1972) and Battle Ax Basalts of Thayer (1936). Potassium-argon ages from this unit range from about 1.2 to 3.9 Ma; in places difficult to distinguish from youngest flows of unit Trb

Tuffaceous sedimentary rocks, tuffs, pumicites, and silicic flows (Miocene) at surface, covers 1 % of this area

Moderately well indurated lacustrine and fluvial (flood-plain) deposits of tuff, pumicite, palagonite tuff, and lesser siltstone, arkosic sandstone, and pebble and cobble conglomerate. Locally contains some lignite beds. Former glass in silicic vitroclastic debris commonly crystallized and altered to secondary silica minerals, alkali feldspar, zeolites, and clay minerals. Contains some welded and nonwelded ash-flow tuffs, and minor rhyolite flows. Widespread and abundant vertebrate fossils and minor plant fossils indicate that most of unit is of middle Miocene (Barstovian) age; parts of unit between Goose Lake and Warner Valley may include rocks of early Miocene age. Locally interlayered with and locally overlies basalt and andesite flows of unit Tmb. Overlies and locally interfingers with Picture Gorge Basalt (Thayer and Brown, 1966) and with Miocene basalt south of Prineville. Includes Mascall Formation of Merriam (1901), Sucker (Succor) Creek Formation of Corcoran and others (1962) and Kittleman and others (1967), Drip Spring Formation of Kittleman and others (1965, 1967), Trout Creek Formation of Smith (1926), and "rocks of Miocene age" of Malde and Powers (1962) in the southern Owyhee Upland province. In southeast Oregon, some of these rocks represent caldera and moat-fill deposits

Strawberry Volcanics (Miocene to Pliocene) at surface, covers 1 % of this area

Flows and flow breccia of basalt, basaltic andesite, and andesite; includes restricted domal complexes and related flows and breccia of rhyolite and dacite (Thayer, 1957; Brown and Thayer, 1966). Potassium-argon ages are mostly in the range of 12 to 20 Ma (Robyn, 1977; Fiebelkorn and others, 1983)

Basaltic lava flows (Oligocene to Miocene) at surface, covers 1 % of this area

Basaltic and basaltic andesite lava flows and breccia; grades laterally into rare bedded palagonitic tuff and breccia

John Day Formation of east-central Oregon (Late Eocene to Early Miocene) at surface, covers 1 % of this area

John Day Formation of east-central Oregon (lower Miocene, Oligocene, and uppermost Eocene?)

Basaltic andesite and basalt (Quaternary) at surface, covers 1 % of this area

Flows and flow breccia dominantly of basaltic andesite containing plagioclase, olivine, and pyroxene phenocrysts and olivine-bearing basalt representing part of the volcanic sequence of the High Cascade Range (Thayer, 1937). Unit mostly forms small shield volcanoes, gentle-sided lava cones, and, in places, intracanyon flows

Landslide and debris-flow deposits (Pleistocene to Holocene) at surface, covers 1 % of this area

Unstratified mixtures of fragments of adjacent bedrock. Locally includes slope wash and colluvium. Largest slides and debris flows occur where thick sections of basalt and andesite flows overlie clayey tuffaceous rocks. May include some deposits of late Pliocene age

Rhyolite and dacite (Miocene to Pliocene) at surface, covers 1 % of this area

Ash-flow tuff, lava flows, pumice-lapilli tuff, coarse pumicite, flow breccia, and domal complexes of rhyolitic, rhyodacitic, and dacitic composition; in places includes peralkaline rhyolite and some andesite and andesite breccia. Locally porphyritic with phenocrysts of alkali feldspar, plagioclase, and minor augite, ferro-hedenbergite, hornblende, hypersthene, or biotite. Commonly flow banded; locally glassy. Many of the ash--flow tuffs exhibit flow features and only obscure vitro-clastic textures. In places includes interlayers of silicic volcaniclastic rocks and tuffaceous sedimentary rocks. Includes rhyolite at Owyhee Dam, Jump Creek Rhyolite, and Littlefield Rhyolite, all of Kittleman and others (1965); Dooley Rhyolite Breccia of Gilluly (1937), radiometrically dated at 14.7 ñ 0.4 Ma by potassium-argon methods (Fiebelkorn and others, 1983); resurgent domal masses in McDermitt caldera area; and extensive unnamed flows and ash-flow tuffs in the central and southern part of the Owyhee Upland. Also includes isolated masses of dacitic and rhyodacitic flows, breccia, and ash-flow tuff along eastern slope of Cascade Range that are lapped by flows and sediments of the Madras (or Deschutes) Formation. Potassium-argon ages on rocks in unit from southeast Oregon range from about 13 to 16 Ma; lenses of interbedded tuffaceous sedimentary rocks locally contain a Miocene (Barstovian) vertebrate fauna

Columbia River Basalt Group and related flows (Miocene) at surface, covers 1 % of this area

Subaerial basalt and minor andesite lava flows and flow breccia; submarine palagonitic tuff and pillow complexes of the Columbia River Basalt Group (Swanson and others, 1979); locally includes invasive basalt flows. Flows locally grade laterally into subaqueous pillow-palagonite complexes and bedded palagonitic tuff and breccia. In places includes tuffaceous sedimentary interbeds. Joints commonly coated with nontronite and other clayey alteration products. Occurs principally in the Willamette Valley from Salem north to the Columbia River, and in the northern Coast Range. Unit includes correlative Cape Foulweather and Depoe Bay Basalts in the Coast Range (Snavely and others, 1973, 1976a, 1976b; Swanson and others, 1979; Wells and others, 1983). In Eastern Oregon, occurs principally in Deschutes-Umatilla Plateau and in the Blue Mountains. K-Ar ages range from about 6 to about 16.5 Ma (McKee and others, 1977; Swanson and others, 1979; Sutter, 1978; Lux, 1982). Locally separated into Tcs, Tcw, Tcg, Tcp, and Tci

Ridge-capping basalt and basaltic andesite (Late Miocene to Pliocene) at surface, covers 1 % of this area

Flows and flow breccia of basaltic andesite and lesser diktytaxitic to intergranular olivine basalt. Includes some dense, aphyric flows, commonly with either cryptocrystalline or pilotaxitic to trachytic texture, and porphyritic flows with phenocrysts and glomerocrysts of olivine, hypersthene, and labradorite. A few flows contain both hypersthene and calcic augite phenocrysts. Olivine mostly fresh or slightly altered to iddingsite in flows high in section; flows low in section show some alteration to clays (nontronite and saponite), secondary silica minerals, and calcite; pinkish-brown glass in some flows unaltered. Locally includes some andesite and dacite. Some flows of this unit are lithologically similar to flow rocks of the High Cascade volcanic sequence and some are more like flows that in the past have been mapped as part of the Sardine Formation (Peck and others, 1964) and Elk Lake Formation of McBirney and others (1974) and Sutter (1978). Potassium-argon ages of rocks from this unit range from about 4 to 8 or 9 Ma. Includes some rocks formerly mapped as Rhododendron Formation by Peck and others (1964)

Glacial deposits (Pleistocene) at surface, covers 1 % of this area

Unsorted bouldery gravel, sand, and rock flour in ground, terminal, and lateral moraines. Locally partly sorted

Tuffaceous siltstone and sandstone (Middle Eocene to Late Eocene) at surface, covers 1 % of this area

Thick- to thin-bedded marine tuffaceous mudstone, siltstone, and sandstone; fine to coarse grained. Contains calcareous concretions and, in places, is carbonaceous and micaceous. Includes the Nestucca Formation, which contains a foraminiferal assemblage assigned to the upper Narizian and lowermost Refugian Stages (Snavely and others, 1969; McKeel, 1980); the Spencer Formation, which contains Narizian Stage foraminifers; the Keasey Formation, which contains upper Narizian and lower Refugian Stage foraminifers (McDougall, 1975, 1980); the Coaledo and Bateman Formations of Baldwin (1974); upper Eocene sandstone of Bela (1981); and the Sager Creek formation (informal name) of Niem and Niem (1985)

Terrace, pediment, and lag gravels (Pleistocene to Holocene) at surface, covers 1.0 % of this area

Unconsolidated deposits of gravel, cobbles, and boulders intermixed and locally interlayered with clay, silt, and sand. Mostly on terraces and pediments above present flood plains. Includes older alluvium of Smith and others (1982) in the Klamath Mountains and both high- and low-level terraces along Oregon coast. Includes dissected alluvial fan deposits northeast of Lebanon, and Linn and Leffler Gravels of Allison and Felts (1956)

Sedimentary rocks of Dothan Formation and related rocks (Late Jurassic to Early Cretaceous) at surface, covers 1.0 % of this area

Sandstone, conglomerate, graywacke, rhythmically banded chert lenses. Includes western Dothan and Otter Point Formations of M.C. Blake, Jr. and AS. Jayko (unpublished data, 1985) in Curry and southern Coos Counties

Silicic vent rocks (Eocene to Pliocene) at surface, covers 1.0 % of this area

Plugs and domal complexes of rhyolitic, rhyodacitic, and dacitic composition; includes related near-vent flows, flow breccia, and deposits of obsidian, perlite, and pumice. Locally includes resurgent domes related to caldera complexes. In southeast Oregon many domal complexes younger than 11 Ma exhibit a well-defined southeast to northwest age progression (Walker, 1974; MacLeod and others, 1976) from about 11 Ma to less than 1 Ma

Basaltic and andesitic rocks (Middle to Late Miocene) at surface, covers 0.9 % of this area

Lava flows and flow breccia of hypersthene and olivine andesite, basaltic andesite containing plagioclase and pyroxene phenocrysts, and basalt; many flows contain phenocrysts of both hypersthene and augite. Includes interbedded volcaniclastic and epiclastic rocks mostly of andesitic composition, but partly of dacitic or rhyodacitic composition. Includes really restricted flows of silicic andesite or dacite. Upper part of unit mostly unaltered, although olivine crystals are locally altered to clay minerals. Lower parts commonly altered; secondary minerals include nontronite and saponite, chalcedony, calcite, and zeolites. Older parts of this unit locally are propylitically altered adjacent to larger intrusions. Erupted mostly from widespread, northwest- and north-trending dikes and dike swarms and related plugs and lava cones. Potassium-argon ages range from about 10 Ma to about 17 Ma. Much of this unit was previously assigned to the Sardine Formation (Peck and others, 1964), although the type locality of the Sardine Formation ("Sardine Series" as mapped by Thayer, 1939) may be older. Includes Elk Lake Formation (White, 1980a, 1980b), part of the Rhododendron Formation (Trimble, 1963; Wise, 1969), and andesite of Nohorn Creek of Hammond and others (1982)

Siletz River Volcanics and related rocks (Paleocene to Middle Eocene) at surface, covers 0.9 % of this area

Aphanitic to porphyritic, vesicular pillow flows, tuff-breccias, massive lava flows and sills of tholeiitic and alkalic basalt. Upper part of sequence contains numerous interbeds of basaltic siltstone and sandstone, basaltic tuff, and locally derived basalt conglomerate. Rocks of unit pervasively zeolitized and veined with calcite. Most of these rocks are of marine origin and have been interpreted as oceanic crust and seamounts (Snavely and others, 1968). Foraminiferal assemblages referred to the Ulatisian and Penutian Stages (Snavely and others, 1969); K-Ar ages range from 50.7 ñ 3.1 to 58.1 ñ 1.5 Ma (Duncan, 1982); includes the lower part of the Roseburg Formation of Baldwin (1974), which has yielded K-Ar ages as old as 62 Ma

Yamhill Formation and related rocks (Middle Eocene to Late Eocene) at surface, covers 0.8 % of this area

Massive to thin-bedded concretionary marine siltstone and thin interbeds of arkosic, glauconitic, and basaltic sandstone; locally contains interlayered basalt lava flows and lapilli tuff. Foraminiferal assemblages in siltstone referred to the Ulatisian and lower Narizian Stages (Snavely and others, 1969; McKeel, 1980) Includes the Elkton Formation of Baldwin (1974; also see Beaulieu and Hughes, 1975), which consists of thin-bedded siltstone and minor sandstone interbeds

Saddle Mountains Basalt (Middle to Late Miocene) at surface, covers 0.8 % of this area

Petrographically diverse flows of basalt erupted between about 13.5 and 6 Ma (McKee and others, 1977; Swanson and others, 1979)

Lacustrine and fluvial deposits (Miocene) at surface, covers 0.7 % of this area

Poorly to moderately consolidated, bedded silicic ash and pumicite, diatomite, tuffaceous sedimentary rocks, minor mudflow deposits, and some coarse epiclastic deposits. Vitroclastic material in some beds diagenetically altered to zeolites, secondary silica minerals, and clay minerals. In eastern Blue Mountains province vertebrate fossils indicate unit is mostly of late Miocene (Clarendonian) age, but may also include some rocks of middle Miocene (Barstovian) age. In High Lava Plains and northern Owyhee Upland provinces, vertebrate fossils indicate unit is partly late Miocene (Clarendonian), but probably is mostly middle Miocene (Barstovian) in age. Interfingers and grades laterally into unit Tmb. Includes lake and stream sediments and tuffaceous lake and stream deposits of Prostka (1962, 1967), Deer Butte Formation of Corcoran and others (1962) and Kittleman and others (1967), Juntura Formation of Shotwell and others (1963), some rocks originally assigned to the lower part of the (now obsolete) Danforth Formation of Piper and others (1939), and interbeds in upper part of Columbia River Basalt Group in northern Wallowa County

Sedimentary and volcaniclastic rocks (Tertiary) at surface, covers 0.7 % of this area

Lapilli tuff, mudflow deposits (lahars), flow breccia, and volcanic conglomerate, mostly of basaltic to dacitic composition; rare iron-stained palagonitic tuff and breccia of basaltic and andesitic composition; and ash-flow, air-fall, and water-laid tuff of dacitic to rhyolitic composition. The palagonite tuff and breccia grade laterally into peperite and into lava flows of basalt and basaltic andesite

Mazama ash-flow deposits (Holocene) at surface, covers 0.6 % of this area

Rhyodacitic to andesitic ash-flow deposits related to climactic eruptions of Mount Mazama about 6,845 yr B.P. (14C) (Bacon, 1983)

Flows and clastic rocks, undifferentiated (Miocene) at surface, covers 0.6 % of this area

Chiefly basaltic andesite and andesite lava flows and flow breccia containing plagioclase and pyroxene (hypersthene and augite) phenocrysts, mudflows (lahars), and volcanic conglomerates; locally includes some dacite flows. Includes lesser, coarse- to fine-grained epiclastic volcanic sedimentary rocks and ash-flow and air-fall tuffs. Partly equivalent in age to unit Tba and may be partly coeval with younger parts of unit Tstb. Locally altered adjacent to larger intrusions. The oldest radiometrically dated rocks assigned to this unit are about 17 Ma (Sutter, 1978); in part lapped by flows questionably assigned to unit Tba, radiometrically dated at about 10 Ma, and unconformably overlain by flows of unit Trb. Includes some of rocks formerly mapped as Sardine Formation and some mapped as Rhododendron Formation

Glaciofluvial, lacustrine, and pediment sedimentary deposits (Pleistocene) at surface, covers 0.6 % of this area

Unconsolidated, poorly sorted silt, sand, and gravel. Includes lacustrine deposits west of Columbia River Gorge (Trimble, 1963). Mostly in northern Morrow and Umatilla Counties where unit represents deposits of swollen late Pleistocene Columbia River (Hogenson, 1964)

Intrusive rocks (Jurassic to Cretaceous) at surface, covers 0.6 % of this area

Hornblende and biotite quartz diorite (tonalite), trondhjemite, granodiorite, and small amounts of norite, in batholithic masses and large dikelike bodies. Includes Bald Mountain Tonalite and Anthony Lake Granodiorite of Taubeneck (1957), tonalite and trondhjemite of Wallowa batholith and Cornucopia stock (Taubeneck, 1964; Nolf, 1966), quartz diorite intrusion in the Snake River area (Morrison, 1963), quartz diorite and minor other intrusive rocks in the Caviness quadrangle (Wolff, 1965), quartz diorite northeast of John Day and southeast of Ironside Mountain (Thayer and Brown, 1964), quartz diorite in the Sparta and Durkee quadrangles (Prostka, 1962; 1967), and granodiorite and related rocks of the Pueblo Mountains (Roback and others, 1987). Rubidium-strontium and potassium-argon ages indicate an age range from about 94 to 160 Ma (Taubeneck, 1963; Thayer and Brown, 1964; Armstrong and others, 1976)

Ultramafic and related rocks of ophiolite sequences (Paleozoic(?), Triassic(?), and Jurassic) at surface, covers 0.6 % of this area

Predominantly harzburgite and dunite with both cumulate and tectonite fabrics. Locally altered to serpentinite. Includes gabbroic rocks and sheeted diabasic dike complexes. Comprises Josephine ophiolite of Harper (1980), ophiolites of Onion Mountain, Sexton Mountain, Pearsoll Peak, Rogue River, and Riddle areas (Smith and others, 1982) and Coast Range ophiolite and serpentinite melange of M.C. Blake, Jr. and A.S. Jayko (unpublished data, 1985). In southwest Oregon, locally includes small bodies of early Mesozoic or late Paleozoic serpentinized and sheared ultramafic rocks, mostly in shear zones. Locally, volcanic and sedimentary rocks shown separately

Volcanic rocks (Triassic and (or) Jurassic) at surface, covers 0.6 % of this area

Massive flows of porphyritic meta-andesite, metabasalt, spilite, and keratophyre, volcanic breccia, and subordinate amounts of fine-grained volcaniclastic rocks. In southwest Oregon includes hornblende, pyroxene, and plagioclase porphyritic andesite flows, breccia, agglomerate, tuff, and locally, some basalt flows and dacitic tuffs of the Applegate Group

Mafic and intermediate vent rocks (Miocene to Pliocene) at surface, covers 0.6 % of this area

Basaltic and andesitic agglomerate, breccia, scoria, cinders, flows, and intrusive masses forming lava cones and small shields

Sedimentary rocks, partly metamorphosed (Paleozoic to Triassic) at surface, covers 0.6 % of this area

Poorly bedded argillite, chert, phyllite, phyllitic quartzite, calc-phyllite, impure limestone, and marble. In places rocks are strongly foliated. Sparse fossils (Fusilina, corals, and crinoids) indicate that the unit includes rocks of Leonardian, Ochoan, and Late Triassic age (OR084). Includes Elkhorn Ridge Argillite (OR035), Mesozoic and Paleozoic sedimentary rocks of Brown and Thayer (OR008), and the Permian Coyote Butte Formation (OR085). In Baker County includes "sedimentary and volcanic rocks" (MzPza) of Brooks and others (OR039) and metamorphosed sedimentary and minor volcaniclastic rocks containing mineral assemblages indicative of quartz-albite-muscovite-chlorite subfacies and quartz-albite-epidote-biotite subfacies of the greenschist facies. In Jefferson and Wasco Counties north of Prineville, includes "phyllite and sedimentary rocks " of Swanson (OR031). Includes part of the Burnt River Schist (OR035; OR081) and volcaniclastic facies of several metavolcanic units of Permian and Late Triassic age. Not on State map (OR001) in area of La Grande 100K quadrangle, butmapped in OR291 as Elkhorn Ridge Argillite (Triassic Permian, Pennsylvannian, and Devonian?)

Fisher and Eugene Formations and correlative rocks (Late Eocene to Oligocene) at surface, covers 0.5 % of this area

Thin to moderately thick bedded, coarse- to fine-grained arkosic and micaceous sandstone and siltstone, locally highly pumiceous, of the marine Eugene Formation; and coeval and older andesitic lapilli tuff, breccia, water-laid and air-fall silicic ash of the continental Fisher and Colestin Formations; upper parts of the Fisher Formation apparently lap onto and interfinger with the Eugene Formation. Megafauna in the Eugene Formation were assigned an Oligocene age by Vokes and others (1951) and foraminifers have been assigned to the upper part of the lower Refugian Stage (McDougall, 1980), or of late Eocene age. Basalt lava flows in the Fisher Formation have yielded isotopic ages as old as 40 Ma (Lux, 1982), and south of the latitude of Cottage Grove the Fisher is overlain by a welded tuff in unit Tu dated at about 35 Ma. North of Eugene, rocks of this unit are overlain unconformably by continental volcanogenic rocks of unit Tu, including an ash-flow tuff with a K-Ar age of 30.9 ñ 0.4 Ma

Rhyolitic tuff, tuffaceous sedimentary rocks, and lava flows (Late Eocene to Early Miocene) at surface, covers 0.5 % of this area

Rhyolitic to dacitic varicolored bedded tuff, lapilli tuff, and fine- to medium-grained tuffaceous sedimentary rocks with interstratified welded and nonwelded ash-flow tuff and interbedded basalt and andesite flows. Also includes minor rhyolite and dacite flows and domes. Glass in tuff and tuffaceous sedimentary rocks is commonly altered to zeolites, clay minerals, and small amounts of opal, chalcedony, orthoclase, and calcite. Fossil plants and vertebrates indicate an Oligocene and Miocene age. Locally a late Hemingfordian age indicated by mammalian fauna (Woodburn and Robinson, 1977). May include some rocks of middle Miocene age in the area west and northwest of Lakeview. Potassium-argon ages on rocks from unit range from about 36 Ma (Swanson and Robinson, 1968) to about 20 Ma. Includes Pike Creek Formation of Walker and Repenning (1965), originally identified as Pike Creek Volcanic Series by Fuller (1931), and unnamed volcanic and volcaniclastic rocks of southern Lake County, some of which have been correlated with the Miocene and Oligocene Cedarville Formation of northeastern California

Welded tuffs and tuffaceous sedimentary rocks (Middle to Late Miocene) at surface, covers 0.5 % of this area

Partly to densely welded vitric and vitric-crystal tuff of soda-rhyolitic, rhyolitic, and rhyodacitic composition that interfingers with and grades laterally into unit Tit. Includes some nonwelded ash-flow tuff and tuffaceous sedimentary rocks. Potassium-argon ages range from about 13 to 16 Ma. In Harney and Malheur Counties, it commonly overlies unit Tmb. Includes Dinner Creek Welded Tuff of Haddock (1965; 1967) and middle and upper Miocene ash-flow tuffs of Rytuba and others (1982; 1983a, b), widely exposed in the Trout Creek Mountains and adjacent areas, erupted from the McDermitt caldera complex, west and southwest of McDermitt, Nevada-Oregon, the White Horse caldera, northwest of McDermitt, and several other vent areas

Youngest basalt and basaltic andesite (Holocene) at surface, covers 0.5 % of this area

Little-modified flows and associated breccia of basaltic andesite and some basalt in both central part of Cascade Range and on slopes of Newberry Volcano. Relations to Mazama pumice deposits indicate most of these rocks are less than 6,800 yr old (14C); isotopic ages on flows range from about 1,000 to 6,000 yr B.P. (14C)

Loess (Pleistocene to Holocene) at surface, covers 0.5 % of this area

Windblown clayey silt and fine sand. Includes the Pleistocene Palouse Formation and deposits derived mostly from reworking of Palouse Formation. Contains local interbedded layers of soil, caliche, and some water-laid silt and gravel

Granitic rocks (Late Jurassic and Early Cretaceous) at surface, covers 0.5 % of this area

Mostly tonalite and quartz diorite but including lesser amounts of other granitoid rocks. Potassium-argon ages determined on hornblende indicates plutons range in age from 143 to 166 Ma (Hotz, 1971)

Marine sandstone, siltstone, and mudstone (Paleocene to Early Eocene) at surface, covers 0.5 % of this area

Rhythmically interbedded sandstone, siltstone, and mudstone with minor conglomerate; deposited in deep-sea fan depositional setting on submarine basalts of the Siletz River Volcanics. Contains foraminiferal faunas referred to the Penutian Stage of early Eocene age and locally contains assemblages of probable Paleocene age (McKeel and Lipps, 1975; P.D. Snavely, Jr. and David Bukry, written communication, 1980). Included by Diller (1898) in the Umpqua Formation; Baldwin (1974) and Ryberg (1984) mostly mapped unit as sedimentary rocks of the Roseburg Formation of the Umpqua Group; according to Heller and Ryberg (1983) and Molenaar (1985), may be partly correlative with the Lookingglass Formation of Baldwin (1974). Includes lower Eocene-Paleocene turbidite sedimentary rocks exposed at Five Mile Point, about 11 km north of Bandon, that are considered by Snavely and others (1980) to represent allochtonous terrane

Tillamook Volcanics (Middle Eocene to Late Eocene) at surface, covers 0.5 % of this area

Subaerial basaltic flows and breccia and submarine basaltic breccia, pillow lavas, lapilli and augite-rich tuff with interbeds of basaltic sandstone, siltstone, and conglomerate. Includes some basaltic andesite and, near the top of the sequence, some dacite. Potassium-argon ages on middle and lower parts of sequence range from about 43 to 46 Ma (Magill and others, 1981): one potassium-argon age from dacite near top of sequence is about 40 Ma (see Wells and others, 1983)

Fanglomerate (Pleistocene to Holocene) at surface, covers 0.5 % of this area

Poorly sorted and poorly stratified alluvial fan debris, slope wash, colluvium, and talus; composed mostly of silt and fragments of basalt, basaltic andesite, and andesite. In places includes small areas of pediment gravels and colluvium

Marine sedimentary and tuffaceous rocks (Late Eocene to Middle Miocene) at surface, covers 0.5 % of this area

Tuffaceous and arkosic sandstone, locally fossiliferous, tuffaceous siltstone, tuff, glauconitic sandstone, minor conglomerate layers and lenses, and a few thin coal beds. Includes Scappoose Formation (Trimble, 1963; Wells and others, 1983), mudstone of Oswald West (Niem and Van Atta, 1973; Wells and others, 1983), Pittsburg Bluff Formation (see Wells and others, 1983), and Smuggler Cove and Northrup Creek formations (informal names) of Niem and Niem (1985)

Sedimentary rocks (Late Jurassic) at surface, covers 0.4 % of this area

Black and gray mudstone, shale, siltstone, graywacke, andesitic to dacitic water-laid tuff, porcelaneous tuff, and minor interlayers and lenses of limestone and fine-grained sediments metamorphosed to phyllite or slate. Locally includes some felsite, andesite and basalt flows, breccia, and agglomerate. Marine invertebrate fauna indicates age range from Early Jurassic (Hettangian) to early Late Jurassic (Oxfordian). In Klamath Mountains of southwest Oregon, includes Galice Formation (Wells and Peck, 1961) and unnamed, hornblende- and (or) pyroxene-bearing clastic rocks of Jurassic age (Smith and others, 1982)

Mazama pumice deposits (Holocene) at surface, covers 0.4 % of this area

Primary and reworked air-fall rhyodacite pumice related to climactic eruptions of Mount Mazama about 6,845 yr B.P.(14C). Mapped only where it extensively covers older units

Sedimentary rocks (Jurassic) at surface, covers 0.4 % of this area

Black and gray mudstone, shale, siltstone, graywacke, andesitic to dacitic water-laid tuff, porcelaneous tuff, and minor interlayers and lenses of limestone and fine-grained sediments metamorphosed to phyllite or slate. Locally includes some felsite, andesite and basalt flows, breccia, and agglomerate. Marine invertebrate fauna indicates age range from Early Jurassic (Hettangian) to early Late Jurassic (Oxfordian). In northeast Oregon, includes Graylock Formation, Mowich Group, and Shaw Member (of Snowshoe Formation) of Dickinson and Vigrass (1965); Keller Creek Shale of Brown and Thayer (1966); Weberg, Warm Springs, Snowshoe, Trowbridge, and Lonesome Formations of Lupher (1941); the Coon Hollow Formation of Morrison (1964); and unnamed Jurassic rocks near Juniper Mountain in northern Malheur County (Wagner and others, 1963)

Sedimentary rocks (Pliocene to Pleistocene) at surface, covers 0.4 % of this area

Semiconsolidated lacustrine and fluvial ashy and palagonitic sedimentary rocks, mostly tuffaceous sandstone and siltstone; locally contains abundant palagonitized basaltic debris and some pebble conglomerate. Includes alluvial gravel and mudflow deposits of Walters Hill and Springwater Formations (Trimble, 1963). In places, grades laterally through palagonite tuff and breccia into basalt flows

Dune sand (Holocene) at surface, covers 0.4 % of this area

Large areas of windblown sand composed of rock-forming minerals, mostly feldspar and small amounts of quartz, and, in southeastern Oregon, also pumice

Mafic intrusions (Oligocene) at surface, covers 0.3 % of this area

Sheets, sills, and dikes of massive granophyric ferrogabbro; some bodies strongly differentiated and include pegmatitic gabbro, ferrogranophyre, and granophyre (MacLeod, 1981). Plagioclase and amphibole from unit have yielded K-Ar ages of about 30 Ma (Snavely and others, 1976a)

Mafic vent complexes (Late Miocene to Pleistocene) at surface, covers 0.3 % of this area

Plugs, dikes, and related near-vent flows, breccia, cinders, and agglutinate of basalt, basaltic andesite, and andesite; commonly in the form of either little-modified lava cones or partly eroded piles of reddish, iron-stained thin flows and fragmental ejecta cut by mafic intrusions. May also include rocks of late Miocene(?) age

Predominantly tuffaceous facies of Clarno Formation (Eocene to Early Oligocene) at surface, covers 0.3 % of this area

Mapped separately by Swanson (1969a) in the Ochoco and Maury Mountains of the Blue Mountains Province

Marine siltstone, sandstone, and conglomerate (Early Eocene) at surface, covers 0.3 % of this area

Cobble and pebble conglomerate, pebbly sandstone, lithic sandstone, siltstone, and mudstone; massive to thin bedded; shelf and slope depositional setting. Contains foraminiferal faunas referred to the Penutian Stage of early Eocene age. Included by Diller (1898) in the Umpqua Formation; Baldwin (1974) and Ryberg (1984) included it in the Lookingglass Formation of the Umpqua Group of Baldwin; may be partly a shelf and slope facies of the sedimentary rocks of the Roseburg Formation of Baldwin (1974) according to Molenaar (1985) and Heller and Ryberg (1983)

Playa deposits (Holocene) at surface, covers 0.3 % of this area

Clay, silt, sand, and some evaporites

Terrace gravels (Pliocene to Pleistocene) at surface, covers 0.3 % of this area

Unconsolidated to poorly consolidated, poorly sorted gravels and bouldery soil above modern stream channels. In Cascade Range, clasts mostly basalt and andesite. Includes some glacial outwash deposits. In Eastern Oregon, commonly cemented by caliche

Sedimentary rocks of Dothan Formation and related rocks (Late Jurassic to Late Cretaceous) at surface, covers 0.3 % of this area

Sandstone, conglomerate, graywacke, rhythmically banded chert lenses. Includes western Dothan and Otter Point Formations of M.C. Blake, Jr. and AS. Jayko (unpublished data, 1985) in Curry and southern Coos Counties

Sedimentary and volcanic rocks (Late Triassic? to Jurassic) at surface, covers 0.3 % of this area

Olive-drab, pale-brown, dark-gray, and black volcanic graywacke and siltstone; lesser conglomerate and slate, and minor limestone and chert. Includes more extensive outcrops of Triassic or Jurassic limestone at north base of Juniper Mountain in northern Malheur County and near Huntington in southeastern Baker County. Interlayers of silicic and intermediate volcanic rocks are rare. Locally metamorphosed to prehnite-pumpellyite and zeolite facies and in places to greenschist facies. Folded, sheared, and locally foliated. Includes the Weatherby Formation of Brooks (1979). Age is Late Triassic(?) and Early and Middle Jurassic (Sinemurian-Callovian)

Imnaha Basalt (Early Miocene) at surface, covers 0.3 % of this area

Mostly coarse-grained, plagioclase porphyritic basalt; flows commonly contain zeolite amygdules and montmorillonitic alteration is widespread. Potassium-argon ages mostly 16 to 17 Ma (McKee and others, 1981)

Volcanic rocks (Late Jurassic) at surface, covers 0.3 % of this area

Lava flows, flow breccia, and agglomerate dominantly of plagioclase, pyroxene, and hornblende porphyritic and aphyric andesite. Includes flow rocks that range in composition from basalt to rhyolite as well as some interlayered tuff and tuffaceous sedimentary rocks. Commonly metamorphosed to greenschist facies; locally foliated, schistose or gneissic. Includes the Rogue Formation and volcanic rocks commonly assigned to the Galice Formation (Wells and Walker, 1953; Wells and Peck, 1961). Considered to be accreted island-arc terrane

Marine sedimentary rocks (Early Miocene to Middle Miocene) at surface, covers 0.3 % of this area

Fine- to medium-grained Marine siltstone and sandstone that commonly contains tuff beds. Includes the Astoria Formation, which is mostly micaceous and carbonaceous sandstone, and the middle Miocene Gnat Creek Formation of Niem and Niem (1985), which overlies Frenchmen Springs Member of the Wanapum Basalt east of Astoria. The Astoria Formation locally contains calcareous concretions and sulfide nodules; foraminifers in formation are assigned to the Saucesian and Relizian Stages (Kleinpell, 1938; Rau, 1981) and molluscan fossils to the Newportian Stage of Addicott (1976, 1981). Also includes Nye Mudstone, which is massive to poorly bedded siltstone and mudstone; foraminiferal assemblages assigned to the Saucesian Stage (Kleinpell, 1938; Rau, 1981) and molluscan fauna to Pillarian(?) Stage (Armentrout, 1981)

Sedimentary and volcanic rocks (Late Triassic) at surface, covers 0.3 % of this area

Undifferentiated marine sedimentary rocks and volcanic rocks, locally slightly to moderately metamorphosed, of Late(?) Triassic age, exposed principally in Hells Canyon of Snake River, locally in tributary canyons of Imnaha River, and in several areas marginal to the Wallowa Mountains

Tuff (Tertiary) at surface, covers 0.2 % of this area

Welded to unwelded, mostly vitric crystal and vitric ash-flow tuff of several ages. Glass in tuff locally altered to clay, zeolites, and secondary silica minerals

Volcanic rocks (Permian to Triassic) at surface, covers 0.2 % of this area

Massive flows of porphyritic meta-andesite, metabasalt, spilite, and keratophyre, volcanic breccia, and subordinate amounts of fine-grained volcaniclastic rocks. In eastern Oregon probably mostly Late Triassic in age, but includes some Permian rocks (OR084). Includes Clover Creek Greenstone (OR035), Gold Creek greenstone (informal name; OR029), and greenstone of Ashley (OR081)

Andesite and dacite and sedimentary rocks (Oligocene to Miocene) at surface, covers 0.2 % of this area

Lava flows, breccia, volcaniclastic and epiclastic rocks mostly of andesitic and dacitic composition; includes minor amounts of altered basaltic rocks. Joint surfaces and cavities commonly lined with hematite or montmorillonite clay, secondary silica minerals, zeolites, celadonite, or calcite. Andesite and dacite typically have plagioclase, hornblende, and clinopyroxene phenocrysts; some flows aphyric. Platy flow-jointing common. Age, mostly Oligocene; may include some rocks of early Miocene age. As shown, may include some rocks older than Oligocene, correlative with upper parts of unit Tea. One potassium-argon age of about 28 Ma on porphyritic hornblende andesite from Sheep Creek, southwest corner of Union County, indicates in part coeval with unit Tsf

Marine sedimentary rocks (Early Triassic) at surface, covers 0.2 % of this area

Black, green, and gray argillite, mudstone, and shale; graywacke, sandy limestone, tuff, and some coarse volcaniclastic rocks; chert, sandstone comprised of chert clasts, and chert pebble conglomerate; thin-bedded and massive limestone. Locally contains some interbedded lava flows, mostly spilite or keratophyre. In places metamorphosed. Invertebrate marine fauna indicates unit mostly of Late Triassic (Karnian and Norian) age. Includes the Begg and Brisbois Formations of Dickinson and Vigrass (1965; Vester Formation of Brown and Thayer, 1966) and the Rail Cabin Argillite of Dickinson and Vigrass (1965); Fields Creek Formation and Laycock and Murderers Creek Graywackes of Brown and Thayer (1966); Martin Bridge Formation and lower sedimentary series in and near the Wallowa Mountains (Prostka, 1962; Nolf, 1966); and Doyle Creek and Wild Sheep Creek Formations (Vallier, 1977). Probably partly age correlative with rocks of the Applegate Group (Wells and Peck, 1961) of southwestern Oregon

Andesite (Quaternary) at surface, covers 0.2 % of this area

Forms major stratovolcanoes dominantly of aphyric to porphyritic basaltic andesite and andesite; phenocrysts are principally pyroxene, olivine, plagioclase, and, rarely, hornblende. Locally includes dacite and minor basalt

Sedimentary rocks (Cretaceous) at surface, covers 0.2 % of this area

Marine graywacke, subgraywacke, conglomerate, and shale. Pebbles and cobbles in conglomerate are well rounded volcanic and metavolcanic rocks, low-grade metasedimentary rocks, quartzite, chert, and minor silicic and intermediate plutonic rocks. Shales are gray to black and are fissile to blocky. Sandstones commonly display graded bedding; conglomerate beds are commonly thick and poorly bedded. Shales, near Mitchell, have yielded latest (Early Cretaceous (Albian) fossils; some earliest Late Cretaceous (Cenomanian) fossils occur in beds southeast of Mitchell (D.L. Jones, oral Commun., 1972). Includes Hudspeth and Gable Creek Formations (OR049), Bernard Formation (OR028), and Cretaceous sedimentary rocks (OR008)

Gabbroic rocks (Paleozoic to Triassic) at surface, covers 0.2 % of this area

Most gabbro genetically related to ultramafic rocks, but some probably derived from metamorphism of Triassic and older volcanic rocks

Silicic vent complexes (Miocene) at surface, covers 0.2 % of this area

Large, rhyolitic to dacitic vent areas in the Cascade Range that commonly include multiple intrusions and much associated silicic eruptive breccia and erosional debris and some flows

Marine sandstone and siltstone (Middle Eocene) at surface, covers 0.2 % of this area

Thin- to thick-bedded, crossbedded, well-sorted, fine- to medium-grain sandstone, siltstone, and mudstone; characterized by sparse fine white mica; shallow marine depositional setting at least partly of deltaic origin. Contains foraminiferal and molluscan faunas of early middle Eocene age. Included by Diller (1898) in the upper part of the Umpqua Formation, by Baldwin (1974) and Ryberg (1984) in the Flournoy Formation of the Umpqua Group, and by Molenaar (1985) in Camas Valley and the White Tail Ridge Members of Baldwin (1974) of the Umpqua Formation

Pyroclastic ejecta of basaltic and andesitic cinder cones (Miocene to Holocene) at surface, covers 0.2 % of this area

Mostly unconsolidated, oxidized, fine to coarse, scoriaceous cinders, bombs, and agglutinate deposited in subaerial environment

Sedimentary rocks (Late Eocene to Oligocene) at surface, covers 0.2 % of this area

Marine shale siltstone, sandstone, and conglomerate, in places partly composed of tuffaceous and basaltic debris; interbeds of arkosic, glauconitic, and quartzose sandstone. Foraminifers are referable to the Refugian and Zemorrian Stages (see marine sedimentary rocks-units Toes and Toem-of Wells and others, 1983). Includes Bastendorff Formation of Baldwin (1974)

Colebrooke Schist (Paleozoic or Mesozoic) at surface, covers 0.2 % of this area

Metamorphosed pelitic sedimentary rocks and subordinate metamorphosed submarine pillow lavas and pyroclastic beds of basaltic composition. Metamorphic age is Early Cretaceous (about 130 Ma), according to Coleman (1972), and protolith may be Jurassic or older in age

Mafic vent deposits (Miocene to Pleistocene) at surface, covers 0.2 % of this area

Mostly in small stratovolcanoes or shield volcanoes and lava cones of basalt and andesite. Includes agglomerate, breccia, scoria, cinders, ash, restricted flows, and small basaltic intrusive bodies. Transitional into pyroclastic rocks of cinder cones (QTp). May also include rocks of late Miocene(?) age

Porphyritic basalt (Late Eocene) at surface, covers 0.1 % of this area

Subaerial lava flows and breccia of porphyritic basalt, minor basaltic andesite, and rare dacite. Includes basalt of Cascade Head (Wells and others, 1983), Yachats Basalt (Snavely and others, 1976c) and Goble Volcanic Series (Warren and others, 1945). Also includes camptonitic extrusive rocks (tuff breccia, lapilli tuff, and minor pillow flows) interbedded in Nestucca Formation

Marine facies (Middle Eocene to Late Eocene) at surface, covers 0.1 % of this area

Basaltic clastic rocks and pillow lavas, locally mapped separately by Wells and others (1983). Foraminiferal assemblages are assigned to the lower part of the Narizian Stage of Mallory (1959); see Wells and others (1983) for summary

Rhyolite and dacite domes and flows and small hypabyssal intrusive bodies (Late Eocene to Miocene) at surface, covers 0.1 % of this area

Mostly light-gray to red, dense, flow-banded, nonporphyritic and porphyritic rhyolite and dacite in nested domes, small intrusive bodies, and related flows. Includes some near-vent breccias, pumice-lapilli tuffs, and coarse pumicites. Commonly associated with mercury mineralization. Includes several small hypabyssal intrusions of diorite, granodiorite, and quartz monzonite exposed in Paisley Hills of Lake County (Muntzert, 1969; Muntzert and Field, 1968). In many places represents vents for lava flows and tuff of unit Tsf

May Creek Schist (Paleozoic(?) to Jurassic) at surface, covers 0.1 % of this area

Layered amphibolite, schist, gneiss, and quartzite. Protolith considered to be of Paleozoic age

Tuffaceous sedimentary rocks and tuffs (Pliocene to Early Pleistocene) at surface, covers 0.1 % of this area

Rhyolitic to andesitic ash-flow tuffs, pumice-fall deposits, minor mud flows, and older alluvium on the flanks of Newberry volcano (MacLeod and others, 1981; 1982) and in areas west and northwest of Bend

Myrtle Group (Late Jurassic to Early Cretaceous) at surface, covers 0.1 % of this area

Conglomerate, sandstone, siltstone, and limestone. Locally fossiliferous. As shown, includes Riddle and Days Creek Formations (Imlay and others, 1959; Jones, 1969)

Andesite (Pliocene to Pleistocene) at surface, covers 0.1 % of this area

Flows and flow breccia in the High Cascade Province composed dominantly of aphyric to porphyritic basaltic andesite and andesite. Mostly represents remnants of moderately to deeply eroded stratovolcanoes. Phenocrysts are mostly plagioclase, olivine, clinopyroxene, and lesser hypersthene and hornblende

Sedimentary rocks, partly metamorphosed (Paleozoic to Jurassic(?)) at surface, covers 0.1 % of this area

Poorly bedded argillite, chert, phyllite, phyllitic quartzite, calc-phyllite, impure limestone, and marble. In places rocks are strongly foliated. In Klamath Mountains of southwest Oregon, includes shale, mudstone, volcaniclastic sandstone, graywacke, conglomerate, tuff, and minor radiolarian chert and marble of the Applegate Group

Glaciofluvial deposits (Pleistocene) at surface, covers 0.1 % of this area

Poorly sorted

Nonmarine sedimentary rocks (Eocene) at surface, covers 0.1 % of this area

Continentally derived conglomerate, pebble conglomerate, sandstone, siltstone, and mudstone containing abundant biotite and muscovite. Dominantly nonvolcanic; clastic material derived from underlying older rocks

Hypabyssal intrusive rocks (Miocene) at surface, covers 0.1 % of this area

Hypabyssal, medium-grained, hornblende diorite and quartz diorite in small stocks and large dikes; includes intrusions of medium- to fine-grained gabbro and plugs and small stocks of medium-grained, holocrystalline, olivine andesite. Also includes medium-grained, commonly porphyritic biotite quartz monzonite and leucocratic granodiorite. Many of these intrusive bodies are moderately to intensely propylitized, as are wallrocks they intrude; locally, along shears, the rocks also are sericitized. Potassium-argon ages on several of these shallow intrusions range from about 8 Ma to about 22 Ma (Wise, 1969; Bikerman, 1970; Sutter, 1978; Power and others, 1981a, b; Fiebelkorn and others, 1983)

Cowlitz Formation (Middle Eocene to Late Eocene) at surface, covers 0.1 % of this area

Micaceous, arkosic to basaltic marine sandstone, siltstone, and mudstone. Foraminiferal assemblages are referred to the upper Narizian Stage of Mallory (1959) in Newton and Van Atta (1976)

Late basalt (Late Pleistocene to Holocene) at surface, covers 0.1 % of this area

Thin flows of scoriaceous, mostly olivine-bearing basalt in southeast Oregon; upper surfaces of flows characterized by blocky, spiny, or pahoehoe structures and by pressure ridges and tumuli, all essentially unmodified by erosion. Occurs at Diamond and Jordan Craters, the Devils Garden (Peterson, 1965), Lava Mountain, east flank of Green Mountain, and Pumice Desert

Shale, mudstone, and sandstone (Late Jurassic) at surface, covers 0.1 % of this area

Black to gray shale, mudstone, and sandstone with local lenses of pebble conglomerate. Overlies Josephine ophiolite of Harper (1980) (unit Ju)

Ultramafic and mafic intrusive rocks and serpentinized equivalents (Paleozoic to Triassic) at surface, covers 0.1 % of this area

Peridotite, pyroxenite, gabbro, and norite. Light-green, gray, and black serpentine, mostly derived from peridotite; commonly highly sheared; in places includes some metavolcanic rocks and metamorphosed inclusions of keratophyre and chert. Includes ultramafic and mafic phases of the ophiolitic Canyon Mountain Complex of Thayer (1963; 1977) and Brown and Thayer (1966), alpine mafic rocks of Wolff (1965), gabbro of Ashley (1967), and serpentinite-matrix melange of Brooks and others (1983) and Ferns and others (1983):

Volcanic and metavolcanic rocks (Late Triassic) at surface, covers 0.1 % of this area

Green to gray spilite and keratophyre flows and flow breccia; and subordinate amounts of coarse volcaniclastic sandstone, tuff, sandstone, siltstone, chert, conglomerate, and limestone. Marine fauna from interlayered sedimentary rocks indicates unit is mostly of Karnian (Late Triassic) age. Includes Late Triassic "andesitic and basaltic rocks" of Nolf and Taubeneck (1963), and the basaltic to rhyolitic metavolcanic rocks and interbedded sedimentary rocks of the Huntington Formation of Brooks (1979). Equivalent, in part, to unit TrPv

Granite and diorite (Triassic to Jurassic) at surface, covers 0.1 % of this area

Felsic to intermediate, granitoid intrusive rocks. Includes Jurassic muscovite granodiorite, hornblende gabbro, tonalite, and quartz diorite of southwest Oregon (Smith and others, 1982)

Otter Point Formation of Dott (1971) and related rocks (Late Jurassic) at surface, covers < 0.1 % of this area

Highly sheared graywacke, mudstone, siltstone, and shale with lenses and pods of sheared greenstone, limestone, chert, blueschist, and serpentine. Identified as melange by some investigators

Sedimentary and volcanic rocks, partly metamorphosed (Permian to Triassic) at surface, covers < 0.1 % of this area

Complexly folded, locally highly foliated and recrystallized undifferentiated sedimentary and volcanic rocks that in places are lithologically similar to Jurassic and Triassic rocks in the Aldrich Mountains of the Blue Mountains province and in other places resemble Elkhorn Ridge Argillite, Clover Creek Greenstone, and Burnt River Schist (Gilluly, 1937). Age probably mostly Late Permian to Late Triassic, but, as shown, may include some Early Jurassic rocks

Subaqueous pyroclastic ejecta of basaltic cinder cones (Miocene to Early Pliocene) at surface, covers < 0.1 % of this area

Deposits of bombs, breccia, and mafic to intermediate tuff; occurs as palagonitic tuff and breccia cones, rings, and ridges. In places interbedded with lacustrine sedimentary rocks

Subaqueous pyroclastic ejecta of basaltic and andesitic cinder cones (Miocene to Holocene) at surface, covers < 0.1 % of this area

Partly consolidated, palagonitized, fine to coarse, scoriaceous altered cinders, bombs, breccia, and minor agglutinate, mostly deposited in subaqueous environment. Commonly with some interlayers and intermixed lacustrine sedimentary rocks. Forms palagonitic tuff and breccia cones and rings (maars) and, in places, palagonitic tuff ridges

Continental sedimentary rocks (Middle Miocene to Late Miocene) at surface, covers < 0.1 % of this area

Poorly sorted and poorly bedded, fine- to coarse-grained tuffaceous siltstone, sandstone, pebble conglomerate, agglomerate, volcanic cobble conglomerate, air-fall tuff, and rare basaltic andesite flows equivalent to those in unit Tba. Included in the Miocene Sardine Formation by Peck and others (1964)

Granite and diorite (Triassic and Jurassic) at surface, covers < 0.1 % of this area

Felsic to intermediate, granitoid intrusive rocks. Includes Jurassic muscovite granodiorite, hornblende gabbro, tonalite, and quartz diorite of southwest Oregon (Smith and others, 1982)

Sedimentary and volcanic rocks, partly metamorphosed (Paleozoic) at surface, covers < 0.1 % of this area

Undifferentiated sedimentary and volcanic rocks some of which are highly deformed and locally metamorphosed to amphibolite and schist. Occurs mostly in Strawberry and Aldrich Mountains of the Blue Mountains province. Includes undivided Paleozoic rocks and Paleozoic volcanic rocks of Brown and Thayer (1966) and Dixie Butte Meta-andesite of Brooks and others (1984)

Rhyolite and dacite (Pleistocene to Holocene) at surface, covers < 0.1 % of this area

Domes and related flows and flow breccia of aphyric and plagioclase and hornblende porphyritic rhyolite and dacite. Includes rhyolite and dacite on Newberry volcano and at South Sister volcano in the Cascade Range that are younger than Mazama ash deposits (Qma , Qmp; radiometrically dated by 14C methods at approximately 6,800 yr old)

Marine sedimentary rocks (Oligocene to Early Miocene) at surface, covers < 0.1 % of this area

Fossiliferous marine tuffaceous arkosic sandstone, and lesser conglomerate, sandstone, claystone, nonmarine volcanic sedimentary rocks, and minor coal. Molluscan and vertebrate (Cetacea) fossils indicate late Oligocene and Miocene age (Orr and Miller, 1983; Miller and Orr, 1984b). Includes Butte Creek beds of Harper (1946), and several Miocene and late Oligocene units of Miller and Orr (1984a, b)

Ultramafic and related rocks of ophiolite sequences; Basaltic volcanic and sedimentary rocks (Jurassic) at surface, covers < 0.1 % of this area

Basalt flows, flow breccia, agglomerate, pillow basalt and pillow breccia, and lesser shale, chert, siltstone, and mudstone of ophiolitic complexes

Sedimentary rocks (Triassic to Jurassic) at surface, covers < 0.1 % of this area

Black, dark-gray, and dark -brownish-gray, thin-bedded siliceous or limy mudstone mostly consists of the Hurwal Formation in the Wallowa Mountains. In lower and middle parts contains Triassic fossils and in upper part Early Jurassic fossils (Nolf, 1966). Contact metamorphosed adjacent to Wallowa batholith

Olivine basalt (Miocene to Pliocene) at surface, covers < 0.1 % of this area

Thin, commonly open-textured (diktytaxitic), subophitic to intergranular olivine basalt flows, intercalated with and grades laterally through palagonite breccia and tuff into tuffaceous sedimentary rocks (unit Ts). In places includes flows of platy olivine andesite or basaltic andesite. Several potassium-argon ages ranging from about 4 to 7 Ma indicate unit is mostly of early Pliocene and late Miocene age. Includes Shumuray Ranch Basalt and Antelope Flat Basalt of Kittleman and others (1965), Grassy Mountain Basalt of Corcoran and others (1962), Drinkwater Basalt of Bowen and others (1963), basalt formerly assigned to Danforth Formation by Piper and others (1939) (see Walker, 1979), Hayes Butte Basalt of Hampton (1964), Pliocene and upper Miocene basalt flows capping and interstratified with the Madras (or Deschutes) Formation, and basalt flows interstratified in the Dalles Formation of Newcomb (1966; 1969)

Yaquina Formation (Late Oligocene to Early Miocene) at surface, covers < 0.1 % of this area

Thick- to thin-bedded sandstone, conglomerate, and tuffaceous siltstone of deltaic origin; locally contains thin coal and ash beds. Conglomerate contains abundant clasts of pumice and dacitic volcanic rocks. In places includes thick lenses of marine tuffaceous siltstone and fine-grained sandstone. Foraminifers in formation assigned to the Zemorrian and lower part of the Saucesian Stages of Kleinpell (1938) and molluscan fauna to the lower Blakeley Stage of Weaver and others (1944)

Basalt and andesite intrusions (Oligocene(?) to Pliocene) at surface, covers < 0.1 % of this area

Sills, plugs and dikes of basaltic andesite, basalt, and andesite. Mostly represents feeders, exposed by erosion, for flows and flow breccias of units Tba and Trb. Includes a few dikes of hornblende and plagioclase porphyritic andesite, commonly altered, and aphyric basaltic andesite that probably were feeders for parts of unit Tub

Marine Eugene Formation, where mapped separately (Late Eocene to Oligocene) at surface, covers < 0.1 % of this area

Marine Eugene Formation, where mapped separately

Melange (Jurassic) at surface, covers < 0.1 % of this area

Structurally complex mixture of basaltic rocks, serpentinite, chert, argillite, conglomerate, silty sandstone, and lenses of marble composing the melange of the Takilma area of Smith and others (1982)

Mafic and intermediate intrusive rocks (Miocene) at surface, covers < 0.1 % of this area

Dikes, plugs, and sills of basalt, diabase, gabbro, and lesser andesite that fed many of the Miocene basalt and andesite flows in unit Tc. Some intrusions are rootless and are invasive into sedimentary sequences; includes related breccia and peperite. Includes Depoe Bay and Cape Foulweather dikes, sills, and plugs in the Coast Range (Snavely and others, 1976a, b; Wells and others, 1983)

Clastic sedimentary rocks (Early to Late Cretaceous) at surface, covers < 0.1 % of this area

Locally fossiliferous sandstone and conglomerate; marine fossils indicate Early Cretaceous (Albian) age (Jones, 1960). Includes the Hornbrook Formation of Peck and others (1956), the Grove Creek strata of Jones (1960) and Page and others (1977), Hunters Cove Formation, Cape Sebastian Sandstone, Humbug Mountain Conglomerate, and Rocky Point Formation (Dott, 1971; Blake and others, 1985) and clastic sedimentary rocks on the West Fork of the Illinois River near Waldo (Imlay and others, 1959), about 12 km south of Cave Junction

Melange of Dutchmans Peak (Paleozoic(?) to Jurassic(?)) at surface, covers < 0.1 % of this area

Heterogeneous mixture of interlayered metasedimentary and metavolcanic rocks metamorphosed to upper greenschist and (or) almandine-amphibolite facies, and serpentinite, gabbro, and metagabbro (Smith and others, 1982)

Sedimentary rocks, partly metamorphosed (Paleozoic) at surface, covers < 0.1 % of this area

Well-bedded limestone, fossiliferous cherty limestone, calcareous and carbonaceous sandstone, chert grit, argillite, and some conglomerate. In places foliated and metamorphosed. Includes fault slivers of Devonian rocks (Kleweno and Jeffords, 1961), Coffee Creek Formation of Mississippian age, Spotted Ridge Formation of Pennsylvanian age (Merriam and Berthiaume, 1943; Mamay and Read, 1956), and Paleozoic sedimentary and metamorphosed sedimentary and volcanic rocks, including sericite schist, amphibolite, and hornblende-garnet schist of Brown and Thayer (1966)

Alsea Formation (Late Eocene to Oligocene) at surface, covers < 0.1 % of this area

Massive to thick-bedded tuffaceous marine siltstone and fine-grained sandstone; locally concretionary. Foraminiferal assemblages assigned to the Zemorrian and upper Refugian Stages (Kleinpell, 1938; Rau, 1975) and molluscan fauna assigned (Snavely and others, 1976a) to the Lincoln and lower Blakeley Stages of Weaver and others (1944)

Amphibolite of Briggs Creek (Paleozoic or Mesozoic) at surface, covers < 0.1 % of this area

Informally called the "Briggs Creek amphibolite" by Garcia (1976) and by Coleman and others (1976). Consists of amphibolite, micaceous quartzite, quartz schist, and recrystallized manganiferous chert. Includes structurally complex amphibole schist and quartz-rich hornblende gneiss of unknown age exposed at and near Chetco Peak west of Cave Junction (Smith and others, 1982)

Basaltic rocks (Late Eocene to Oligocene) at surface, covers < 0.1 % of this area

Probably part of Fisher Formation

Silicic vent deposits (Pliocene to Pleistocene) at surface, covers < 0.1 % of this area

Complex domal masses of rhyolite and dacite that include near-vent flows, breccia, pumicite, perlite, obsidian, and ash-flow tuff

Pyroclastic ejecta of basaltic cinder cones (Miocene to Early Pliocene) at surface, covers < 0.1 % of this area

Mostly unconsolidated, oxidized, fine to course, scoriaceous cinders, bombs, and agglutinate deposited in subaerial environment

Mafic vent complexes (Miocene) at surface, covers < 0.1 % of this area

Intrusive plugs and dike swarms and related near-vent flows, breccias, cinders, and agglutinate of basaltic andesite, basalt, and andesite; commonly in the form of eroded piles of red, iron-stained thin flows, cinders, and agglutinate cut by mafic intrusions

Condrey Mountain Schist (Paleozoic(?) to Jurassic) at surface, covers < 0.1 % of this area

Consists of a variety of schistose rocks characterized by different proportions of muscovite, quartz, graphite, chlorite, actinolite, and epidote, rare thin layers of metachert, and clinozoisite-actinolite-albite-garnet metagabbro. Potassium-argon age on muscovite from unit is about 141 Ma (Lanphere and others, 1968) and on a whole rock sample is about 155 Ma (Suppe and Armstrong, 1972), indicating a Late Jurassic metamorphic age. Protolith is probably Triassic and Paleozoic in age

Volcanic rocks of the Dothan Formation and related rocks (Late Jurassic to Early Cretaceous) at surface, covers < 0.1 % of this area

Basaltic pillow lavas, volcanic breccia, and silicified basalt lava flows

Chetco complex of Hotz (1971) (Late Jurassic) at surface, covers < 0.1 % of this area

Informally named unit representing island-arc volcanic complex comprised predominantly of igneous and metamorphosed volcanic rocks; includes gabbro, metagabbro, quartz diorite, and amphibolite

Mafic vent and intrusive rocks (Eocene) at surface, covers < 0.1 % of this area

Mostly plugs, dikes, and irregular intrusive bodies of basaltic andesite and porphyritic hornblende or pyroxene andesite. Represents some of vents for unit Tca and possibly for unit Tas

Sedimentary and volcanic rocks, partly metamorphosed (Permian) at surface, covers < 0.1 % of this area

Epiclastic and volcaniclastic rocks, chert, limestone, and lava flows of mid- or Early Permian(?) age that are moderately to intensely metamorphosed. Includes part of Hunsaker Creek Formation of Vallier (1977), in the eastern Blue Mountains province, composed mostly of keratophyre flows, keratophyric volcaniclastic rocks and minor spilite, mudstone, and limestone. In Wheeler County, includes phyllite, chert, and fusulinid-bearing crystalline limestone of probable Early Permian (Wolfcampian?) age (Oles and Enlows, 1971), associated with phyllite, chlorite, and muscovite schist, and lawsonite-crossite blueschist (Swanson, 1969b)

Mafic and intermediate intrusive rocks (Miocene to Pliocene) at surface, covers < 0.1 % of this area

Dikes, plugs, and sills of basalt, diabase, gabbro, and lesser andesite that fed many of the Miocene basalt and andesite flows in units Tc and Tba. Some intrusions are rootless and are invasive into sedimentary sequences; includes related breccia and peperite. Includes the Monument dike swarm of northwestern Grant County (OR061), the Chief Joseph dike swarm principally in Baker and Wallowa Counties (OR093), the Steens Mountain dike swarm in Harney County (OR005; OR094; OR095) and numerous isolated intrusive bodies in southern Lake County and several intrusive masses in and near-vent flows in southern Malheur County (OR023;OR024). May also include some lower Pleistocene(?) rocks

Rhyolite and dacite (Miocene to Pliocene) at surface, covers < 0.1 % of this area

Ash-flow tuff, lava flows, pumice-lapilli tuff, coarse pumicite, flow breccia, and domal complexes of rhyolitic, rhyodacitic, and dacitic composition; in places includes peralkaline rhyolite and some andesite and andesite breccia. Locally porphyritic with phenocrysts of alkali feldspar, plagioclase, and minor augite, ferro-hedenbergite, hornblende, hypersthene, or biotite. Commonly flow banded; locally glassy. Many of the ash--flow tuffs exhibit flow features and only obscure vitro-clastic textures. In places includes interlayers of silicic volcaniclastic rocks and tuffaceous sedimentary rocks. Includes rhyolite at Owyhee Dam, Jump Creek Rhyolite, and Littlefield Rhyolite, all of Kittleman and others (1965); Dooley Rhyolite Breccia of Gilluly (1937), radiometrically dated at 14.7 ñ 0.4 Ma by potassium-argon methods (Fiebelkorn and others, 1983); resurgent domal masses in McDermitt caldera area; and extensive unnamed flows and ash-flow tuffs in the central and southern part of the Owyhee Upland. Also includes isolated masses of dacitic and rhyodacitic flows, breccia, and ash-flow tuff along eastern slope of Cascade Range that are lapped by flows and sediments of the Madras (or Deschutes) Formation. Potassium-argon ages on rocks in unit from southeast Oregon range from about 13 to 16 Ma; lenses of interbedded tuffaceous sedimentary rocks locally contain a Miocene (Barstovian) vertebrate fauna

Marble (Permian to Triassic) at surface, covers < 0.1 % of this area

Informally called the "Nelson marble" by Prostka (1967). Light-gray, fine-grained marble and medium- to dark-gray calcareous phyllite, exposed in a nearly continuous band from the Snake River westward through Nelson Station, about 6 km southeast of Durkee, and westward to the area north of Pedro Mountain, southern Baker County. Prostka (1967) considers the Nelson correlative with Upper Triassic Martin Bridge Formation of Ross (1938), whereas Ashley (1967) and Brooks and Vallier (1967) consider it older (Permian?) and stratigraphically and structurally related to Elkhorn Ridge Argillite and Burnt River Schist

Andesitic and basaltic rocks on Steens Mountain (Miocene) at surface, covers < 0.1 % of this area

Called Steens Mountain Volcanic Series by Walker (1977); Steens Mountain Andesitic Series of Fuller (1931) and Williams and Compton (1953)

Gabbro and ultramafic rocks associated with granitic plutons (Late Jurassic and Early Cretaceous) at surface, covers < 0.1 % of this area

Predominantly hornblende gabbro, gabbro, and olivine gabbro, but includes pyroxenite, hornblende pyroxene, and minor peridotite, dunite, and serpentinite (Smith and others, 1982)

Mafic and intermediate vent rocks (Miocene to Pliocene) at surface, covers < 0.1 % of this area

Basaltic and andesitic agglomerate, breccia, scoria, cinders, flows, and intrusive masses forming lava cones and small shields

Miocene volcanic rocks (Middle Miocene) at surface, covers < 0.1 % of this area

Dark-gray to black, dense aphanitic basalt flows; commonly columnar jointed, less commonly irregularly and platy jointed; some flows vesicular, grading to scoriaceous; includes minor pillow lava, palagonite beds, and interbedded soil profiles and sedimentary beds; contains diatomite beds locally. Maximum thickness in south-central Washington may be in excess of 10,000 feet; much thinner in western Washington, where flows are mostly associated with marine sedimentary rocks. Includes acidic and intermediate volcanic rocks in northern Cascade Mountains.

Basaltic lava flows (Oligocene to Miocene) at surface, covers < 0.1 % of this area

Basaltic and basaltic andesite lava flows and breccia; grades laterally into rare bedded palagonitic tuff and breccia

Seven Devils Group. (Triassic and Permian) at surface, covers < 0.1 % of this area

Basaltic to rhyolitic (largely mafic) arc-derived volcanic and volcaniclastic rocks of the Wallowa terrane; includes minor limestone. Composed of Windy Ridge, Hunsaker Creek, Wild Sheep Creek, and Doyle Creek formations. (Mesozoic-Paleozoic Rocks of the Blue Mountains Island-Arc Complex).

Marine sedimentary rocks (Late Miocene to Early Pliocene) at surface, covers < 0.1 % of this area

Massive, thick-bedded sandstone with minor interbeds of siltstone; local fossiliferous conglomerate lenses. Includes principally the Empire Formation of Baldwin (in Beaulieu and Hughes, 1975), originally considered of Pliocene age, but, on the basis of contained molluscan assemblage, now restricted to a late Miocene age (Addicott, 1983)

Mixed rocks (Paleozoic to Mesozoic) at surface, covers < 0.1 % of this area

Intermingled, commonly highly sheared metasedimentary, metavolcanic, and igneous rocks. Includes serpentinite, altered gabbro, chert, siliceous phyllite, greenstone, and limestone

Alkalic intrusive rocks (Eocene to Oligocene) at surface, covers < 0.1 % of this area

Sills, dikes, stocks, and irregular intrusions of porphyritic or aphanitic camptonite, shonkinite, and. nepheline syenite or phonolite. Potassium-argon ages of 32 to 35 Ma obtained on camptonite and nepheline syenite (Snavely and others, 1976c; Fiebelkorn and others, 1983)

Intrusive basalt and andesite (Miocene to Pleistocene) at surface, covers < 0.1 % of this area

Sills, plugs and dikes of basaltic andesite, basalt, and andesite. In the Cascade Range most of these represent feeders, exposed by erosion, for flows and flow breccias of units Tba and Trb and a few are feeders for units QTba and QTa; in foothills of western Cascades includes several sins and dikes that may represent feeders for flows in unit Tu. May include some invasive flows. Includes a few dikes of hornblende and plagioclase porphyritic andesite, commonly altered, that probably were feeders for parts of unit Tu

Quaternary nonmarine deposits (Pleistocene) at surface, covers < 0.1 % of this area

Periglacial eolian deposits. Buff to light-brown, massive, homogenous, unconsolidated loessial silt; some water-laid material locally. Probably early Pleistocene.

Alluvial deposits. (Quaternary) at surface, covers < 0.1 % of this area

Deposits in valleys consisting of gravel, sand, and silt. Includes younger terrace deposits. May contain some glacial deposits and colluvium in uplands. (Quaternary Sediments).

Thin flows of basalt and andesite (Late Eocene to Early Miocene) at surface, covers < 0.1 % of this area

Part of unit Tsfj; exact age uncertain

Marine facies (Middle Eocene to Late Eocene) at surface, covers < 0.1 % of this area

Basaltic clastic rocks and pillow lavas, locally mapped separately by Wells and others (1983). Foraminiferal assemblages are assigned to the lower part of the Narizian Stage of Mallory (1959); see Wells and others (1983) for summary

Alluvium (Holocene) at surface, covers < 0.1 % of this area

Mostly unconsolidated silt, sand, and gravel valley fill with some clay; includes low-level terrace, marsh, peat, artificial fill, and glacial deposits locally.

Glaciolacustrine deposits (Pleistocene) at surface, covers < 0.1 % of this area

Fine-grained sand and silt, well-stratified, with some gravel, clay, and diatomaceous earth. Contains clastic dikes in Walla Walla area.

Basalt (Miocene) at surface, covers < 0.1 % of this area

Basalt flows, plugs and dikes, some olivine basalt, and andesite and latitic rocks. This unit corresponds with unit Tb on the 1978 State map. It is present on the Washoe North, Washoe South, Lincoln, Clark, Elko, Eureka, Humboldt, Nye South, and Lander County maps.

Younger rhyolitic flows and shallow intrusive rocks (Miocene) at surface, covers < 0.1 % of this area

Rhyolitic flows, domes, plugs, breccias, quartz latite, rhyodacite, quartz porphyry dikes, and other shallow intrusive rocks. This unit includes rocks mapped as the Cañon Rhyolite on the Washoe North map, the Jarbidge Rhyolite and phenorhyolitic and phenodacitic flows and domes on the Elko County map, and other unnamed units. It has a distribution similar to Tt3, with exposures in the northern and southern parts of the State, but only crops out in a few places in the central region. It corresponds to unit Tr3 on the 1978 State map, and also includes a few rocks mapped as Trt on the 1978 State map. This unit is exposed in every county except White Pine.

Alluvium, undifferentiated (Holocene and Pleistocene) at surface, covers < 0.1 % of this area

Unit is present in all counties. Some counties divided the alluvium into younger and older units, and some did not. For those that did not, or used other generalized terms for Quaternary rocks, the unit Qal has been used for the general undivided alluvium. Additionally, when polygons have been edited and changed to alluvium, Qal was used as the general value; hence it now is present in all counties. Qya-Younger alluvium: Map unit is used in Churchill, Elko, Esmeralda, Eureka, Humboldt, Lander, and Lincoln Counties where geologic information suggests better-defined younger versus older alluvium. It is mostly interchangeable with Qal, except that it implies some specifically younger Quaternary deposits.

Andesite and basalt flows (Miocene and Oligocene) at surface, covers < 0.1 % of this area

Generally poorly age constrained. This unit includes rocks originally mapped as the Pyramid sequence in Washoe County, the Mizpah Trachyte in Nye County, the Malpais Basalt, Rabbit Spring Formation, and Mira Basalt in Esmeralda County, and many other poorly dated unnamed basaltic and andesitic rocks around the State. It corresponds to unit Tba on the 1978 State map.

Paleozoic marine rocks, undivided, unit 9 (Western Klamath Mountains) (Devonian to Jurassic) at surface, covers < 0.1 % of this area

Undivided Paleozoic metasedimentary rocks. Includes slate, sandstone, shale, chert, conglomerate, limestone, dolomite, marble, phyllite, schist, hornfels, and quartzite

Columbia River Basalt Group. (Miocene) at surface, covers < 0.1 % of this area

Large-volume lava flows of tholeiitic basalt, basaltic andesite, and subordinate andesite in western Idaho; consists of Imnaha Basalt (17.5-16.5 Ma), Grande Ronde Basalt (16.5-15.6 Ma), Wanapum Basalt (15.6-14.5 Ma), and Saddle Mountains Basalt (14.5-6 Ma). Includes porphyritic basalt and basaltic andesite in western Owyhee County. (Quaternary to Eocene Continental Volcanic and Intrusive Rocks).

Younger silicic ash flow tuffs (Miocene) at surface, covers < 0.1 % of this area

Includes units mapped as the High Rock sequence on the Washoe North map; the Timber Mountain, Paintbrush, Crater Flat, and Belted Range Tuffs, and Indian Trail Formation (now abandoned) on the Nye South map; the Thirsty Canyon Tuff on the Nye South and Esmeralda maps; and other unnamed units. Locally it includes tuffaceous sedimentary rocks interstratified with tuffs. It is present in the northernmost part and southernmost parts of the State, and is not exposed in the central region. It corresponds to unit Tt3 on the 1978 State map, although a few rocks also mapped as Trt on the 1978 State map also are included. It is present in Clark, Churchill, Washoe, Nye, Lincoln, Lyon, Douglas, Carson, Esmeralda, Elko, Humboldt, Pershing, and Mineral Counties.

Welded tuffs and tuffaceous sedimentary rocks (Middle to Late Miocene) at surface, covers < 0.1 % of this area

Partly to densely welded vitric and vitric-crystal tuff of soda-rhyolitic, rhyolitic, and rhyodacitic composition that interfingers with and grades laterally into unit Tit. Includes some nonwelded ash-flow tuff and tuffaceous sedimentary rocks. Potassium-argon ages range from about 13 to 16 Ma. In Harney and Malheur Counties, it commonly overlies unit Tmb. Includes Dinner Creek Welded Tuff of Haddock (1965; 1967) and middle and upper Miocene ash-flow tuffs of Rytuba and others (1982; 1983a, b), widely exposed in the Trout Creek Mountains and adjacent areas, erupted from the McDermitt caldera complex, west and southwest of McDermitt, Nevada-Oregon, the White Horse caldera, northwest of McDermitt, and several other vent areas

Intrusive rocks (Triassic and Permian). (Triassic and Permian) at surface, covers < 0.1 % of this area

Diorite, tonalite, granodiorite, gabbro, norite, quartz diorite, and trondhjemite; basement of, and feeders to, volcanic rocks in Seven Devils Group (Wallowa terrane) and Olds Ferry terrane. (Mesozoic-Paleozoic Rocks of the Blue Mountains Island-Arc Complex).

Lake Bonneville deposits. (Pleistocene) at surface, covers < 0.1 % of this area

Silt, clay, sand, and gravel deposited in and at margins of former Lake Bonneville (33-11 calibrated ka) and sand and gravel deposited in giant flood bars by outburst floods from the lake (17.4 calibrated ka). The 1,575-m (5,170 ft) Lake Bonneville shoreline was used to determine the maximum extent of the lake deposits. Flood deposits follow Bonneville flood path from near Downey and the Portneuf River westward along the Snake River to Lewiston. They include sand and silt deposited in slack-water areas to 740 m (2,430 ft) elevation in the Boise, Weiser, Payette, and Snake river drainages. (Quaternary Sediments).

Schist of various types and ages, unit 8 (Condrey Mountain) (Jurassic(?)) at surface, covers < 0.1 % of this area

Schists of various types; mostly Paleozoic or Mesozoic age; some Precambrian.

Basalt, gravel, and tuffaceous sedimentary rocks (Miocene) at surface, covers < 0.1 % of this area

Basalt flows, cinder and lava cones, gravel, and tuffaceous sedimentary rocks mostly in Elko and some in Humboldt Counties. This unit includes the Banbury Formation (Stewart and Carlson, 1978) and the Big Island Formation in Elko County and other unnamed units. It corresponds to unit Tbg from the 1978 State map.

Intrusive gabbroic rocks (Eocene to Oligocene) at surface, covers < 0.1 % of this area

Sills and dikes of basalt, diabase, gabbro, and granophyric gabbro; locally albitized and zeolitized (Snavely and others, 1976a, b)

Younger tuffaceous sedimentary rocks (Pliocene and Miocene) at surface, covers < 0.1 % of this area

Tuffaceous and other young Tertiary sedimentary rocks. Most of these rocks are sedimentary with a strong volcanic component - a few are tuffaceous with a strong sedimentary component. This unit includes rocks originally mapped as the High Rock sequence in Washoe County; the Horse Camp Formation in northern Nye County; the Esmeralda Formation in Mineral and Esmeralda Counties; older lake beds in Lincoln County; the Belted Range Tuff; the Indian Trail Formation (now abandoned); Timber Mountain, Paintbrush, and Crater Flat Tuffs; Wahmonie and Salyer Formations in southern Nye County; the Siebert Tuff in Esmeralda County; the Muddy Creek Formation in Clark County; and the Thousand Creek and Virgin Valley “beds” in Humboldt County; and other unnamed units. It corresponds to units Ts3 and Tts from the 1978 State map. It is present in all counties.

Olds Ferry terrane. (Jurassic and Triassic) at surface, covers < 0.1 % of this area

Basaltic to rhyolitic (largely intermediate) arc-derived volcanic and volcaniclastic rocks of the Huntington Formation; includes minor chert and limestone. (Mesozoic-Paleozoic Rocks of the Blue Mountains Island-Arc Complex).

Marine Eugene Formation, where mapped separately (Late Eocene to Oligocene) at surface, covers < 0.1 % of this area

Marine Eugene Formation, where mapped separately

Landslide deposits, colluvium, and talus (Holocene to Pliocene) at surface, covers < 0.1 % of this area

Unit is mixed on the Washoe North map with basalt, tuff, diatomite, and tuffaceous sediments. It includes the units mapped as Qls from the 1978 State map. It is present in Churchill, Washoe, Nye, Esmeralda, Elko, Eureka, Humboldt, Lander, Lincoln, Mineral, and Pershing Counties.

Coon Hollow and Weatherby formations. (Cretaceous and Jurassic) at surface, covers < 0.1 % of this area

Marine mudstone and subordinate conglomerate and sandstone of the Coon Hollow Formation south of Lewiston and turbiditic sandstone, mudstone, volcanic conglomerate, and andesite and rhyolite tuff of the Weatherby Formation north of Weiser. (Mesozoic-Paleozoic Rocks of the Blue Mountains Island-Arc Complex).

Jurassic marine rocks, unit 1 (Western Sierra Nevada and Western Klamath Mountains) (Triassic to Late Jurassic) at surface, covers < 0.1 % of this area

Shale, sandstone, minor conglomerate, chert, slate, limestone; minor pyroclastic rocks

Tertiary volcanic flow rocks, unit 17 (Cascade Range) (Tertiary (2-24 Ma)) at surface, covers < 0.1 % of this area

Tertiary volcanic flow rocks; minor pyroclastic deposits.

Mesozoic granitic rocks, unit 5 (Klamath Mountains) (Jurassic to early Cretaceous) at surface, covers < 0.1 % of this area

Mesozoic granite, quartz monzonite, granodiorite, and quartz diorite

Carboniferous and Permian volcanic rocks (Devonian to Permian; Triassic in Asotin County) at surface, covers < 0.1 % of this area

Predominantly altered andesite, basalt, and diabase with interbedded chert and argillite; includes some tuff, greenstone, and spilitic volcanic rocks; northern Cascade Mountains. Mostly schistose greenstone, some agglomerate, and rarely lapilli; includes minor beds of limestone with associated argillite and graywacke; northwestern Stevens County.

Quaternary alluvium and marine deposits (Pleistocene to Holocene) at surface, covers < 0.1 % of this area

Alluvium, lake, playa, and terrace deposits; unconsolidated and semi-consolidated. Mostly nonmarine, but includes marine deposits near the coast.

Sediments and sedimentary rocks (Pleistocene and Pliocene). (Pleistocene and Pliocene) at surface, covers < 0.1 % of this area

Older gravel, sand, and silt deposited in fans, streams, and lakes. Includes older terrace gravels and Tuana Gravel northwest of Twin Falls. (Quaternary to Eocene Continental Sediments and Sedimentary Rocks).

Felsic phaneritic intrusive rocks (Cretaceous) at surface, covers < 0.1 % of this area

Granodiorite, granite, and related rocks make up the largest group of granitic intrusions exposed in Nevada. They are present in every county, and are especially abundant in west-central Nevada in an arcuate belt along the border with California extending north and eastward towards Idaho.

Alluvial-fan deposits. (Quaternary) at surface, covers < 0.1 % of this area

Gravel and subordinate sand and silt deposited at mouths of canyons; largest fans are in Basin and Range Province in east-central and southeastern Idaho. (Quaternary Sediments).

Baker Terrane. (Mesozoic and Paleozoic) at surface, covers < 0.1 % of this area

Massive and ribbon chert, phyllite, argillite, cherty limestone, and limestone deposited in relatively deep water, possibly in a forearc basin setting. (Mesozoic-Paleozoic Rocks of the Blue Mountains Island-Arc Complex).

Older alluvium and alluvial fan deposits (Pleistocene and Pliocene) at surface, covers < 0.1 % of this area

Unit consists mostly of older alluvium and alluvial fans. It also includes various stream deposits, gravel, fanglomerates, and older gravels. It is not very consistent in description from county to county. This is used in all counties except Clark.

Undivided pre-Cenozoic metavolcanic rocks, unit 2 (undivided) (Paleozoic(?) to Mesozoic(?)) at surface, covers < 0.1 % of this area

Undivided pre-Cenozoic metavolcanic rocks. Includes latite, dacite, tuff, and greenstone; commonly schistose.

Sedimentary and volcanic rocks. (Jurassic and Triassic) at surface, covers < 0.1 % of this area

Marine limestone and marble of the Martin Bridge Formation and calcareous mudstone and phyllite of the Hurwal Formation exposed west of Riggins and south of Lewiston; basaltic andesite, rhyolite tuff (~202 Ma), and conglomerate along Salmon River southwest of Grangeville; and rhyolite tuff at Pittsburg Landing (~198 Ma). (Mesozoic-Paleozoic Rocks of the Blue Mountains Island-Arc Complex).

Franciscan Complex, unit 1 (Coast Ranges) (Jurassic to Cretaceous) at surface, covers < 0.1 % of this area

Franciscan complex: Cretaceous and Jurassic sandstone with smaller amounts of shale, chert, limestone, and conglomerate. Includes Franciscan melange, except where separated--see KJfm.

Ultramafic rocks, chiefly Mesozoic, unit 2 (Western Sierra Nevada and Klamath Mountains) (Late Proterozoic(?) to Early Jurassic) at surface, covers < 0.1 % of this area

Ultramafic rocks, mostly serpentine. Minor peridotite, gabbro, and diabase. Chiefly Mesozoic unit 2

Mesozoic volcanic rocks, unit 2 (Western Sierra Foothills and Western Klamath Mountains) (Jurassic) at surface, covers < 0.1 % of this area

Undivided Mesozoic volcanic and metavolcanic rocks. Andesite and rhyolite flow rocks, greenstone, volcanic breccia and other pyroclastic rocks; in part strongly metamorphosed. Includes volcanic rocks of Franciscan Complex: basaltic pillow lava, diabase, greenstone, and minor pyroclastic rocks.

Quaternary volcanic flow rocks, unit 1, questionably identified (Cascade Volcanic Field) (Quaternary) at surface, covers < 0.1 % of this area

Quaternary volcanic flow rocks; minor pyroclastic deposits; in part Pliocene and Miocene.