- Mineral Resources
- Online Spatial Data
- Geology
- by state
- Nevada
Basin Assemblage - Shale, chert, quartzite, greenstone, and limestone
Includes the Valmy Formation in Eureka, Humboldt, Lander, and Pershing Counties; Devonian to Upper Cambrian mudstone, shale, chert, siltstone, and gray quartzite in Elko County (Leslie, Isaacson, and others, 1991); Devonian to Ordovician slate, chert, limestone, and sandstone in Mineral County; Devonian to Upper Cambrian rocks in Eureka County (Finney, Perry, and others, 1993); some rocks originally mapped as the Palmetto Formation in Esmeralda County (Albers and Stewart, 1972; Ferguson and Cathcart, 1954); and the Sonoma Range Formation (Ferguson, Muller, and Roberts, 1951) in the Sonoma Range in Humboldt County (later included with the Valmy Formation). The distinctions between these rocks and rocks of the Slope assemblage (DOts) are (1) a more complex and varied history of deformation; (2) less well-defined internal stratigraphic characteristics, which may be a function of structural complexity; (3) fewer shale, siltstone, and sandstone interbeds; (4) less carbonate; and (5) in the Roberts Mountains at least, the Ordovician rocks of this unit are older than the Slope assemblage Ordovician rocks. Like unit DOts, no basement is preserved with these rocks, making it difficult to determine where they were originally laid down, and how far they have been transported. This unit includes Devonian, Silurian, Ordovician, and uppermost Cambrian rocks imbricately faulted and folded together. In a few places, Silurian rocks are defined regionally and broken out separately (Ss), but for the most part they are included in this unit. Likewise, significant exposures of Devonian rocks have been included in unit MDst, but many more are not differentiated from this unit. A great variety of depositional settings are present in ocean basins, and this diversity is represented in these rocks (Watkins and Browne, 1989). While these rocks share a common deformation history indicative of east-directed transport from folding and thrusting along regional structures in different areas of Nevada, these rocks have been subject to additional distinct tectonic events during the Mesozoic and the Paleozoic resulting in significant spatial variability in the structure of these rocks (Evans and Theodore, 1978; Oldow, 1984b).