This data set contains a variety of sample media prepared from
unconsolidated sediments. For example, there are samples of
unconsolidated sediments that have simply been sieved to specific
size fractions before analysis. Unfortunately, the original RASS
database had no field for identifying this size fraction. As we
upgrade the database, we are adding this information when possible;
however, the data set for which this metadata is written does not
contain information on the sieve size. There are also samples of
various types of heavy mineral concentrates within the data set
When these types of samples were properly identified within the
RASS database, they were separated into another data set and not
included in this data set. However, if the concentrates were not
properly identified, they could not be located for exclusion. The
upgrading of the RASS data will include identification of the
currently unidentified heavy-mineral-concentrate samples.
This dataset provides chemical data for Fe, Mg, Ca, Na, K, Ti, Mn,
Ag, As, Au, B, Ba, Be, Bi, Cd, Co, Cr, Cu, La, Mo, Nb, Ni, Pb, Sb,
Sc, Sn, Sr, U, V, W, Y, Zn, Zr, Th, Tl, F, Hg, Pt, and Pd. In
addition, the dataset provides location and descriptive information
for each sample. Not all the descriptive fields contain
information for a particular sample because not all sample
submitters completed all the fields. The analytical methods used
were selected by the sample submitter based on the goals of the
project and will vary throughout the data set. The predominant
analytical methods used for samples in this dataset are:
Emission Spectrography: Grimes and Marranzino, 1968; Fe, Mg, Ca,
Ti, Mn, Ag, As, Au, B, Ba, Be, Bi, Cd, Co, Cr, Cu, La, Mo, Nb, Ni,
Pb, Sb, Sc, Sn, Sr, V, W, Y, Zn, Zr, Th, Ga, Ge, Pd, and Pt.
Atomic Absorption, partial extraction: O'Leary and Meier, 1986; O'
Leary and Viets, 1986; Viets, 1978; Viets, Clark, and Campbell,
1984; Viets, O'Leary, and Clark, 1984; Ward and others, 1969: Ag,
Bi, Cd, Cu, Mo, Pb, Sb, and Zn.
The complete references for all analytical methods used are given below:
Adrian, B.A. and Carlson, R.R., personal communication, Platinum-group elements and gold by nickel-sulfide fire assay separation and optical emission spectroscopy
Alminas, H. and Mosier, E.L., 1976, Oxalic-acid leaching of rock, soil, and stream-sediment samples as an anomaly-accentuation technique: U.S. Geological Survey Open-File Report 76-275. 26 p.
Chao, T.T., Sanzolone, R.F., and Hubert, A.E., 1978, Flame and flameless atomic absorption determination of tellurium in geologic materials: Analytica Chimica Acta, v. 96, p. 251-257.
Church, S.E., 1981, Multi-element analysis of fifty-four geochemical reference samples using inductively coupled plasma-atomic emission spectrometry: Geostandards Newsletter, v. 5, p. 133-160.
Cooley, E.F., Curry, K.J., and Carlson, R.R., 1976, Analysis for the platinum-group metals and gold by fire-assay emission spectroscopy: Applied Spectroscopy, v. 30. P. 52-56.
Fishman, M.J., and Pyen, G., 1979, Determination of selected anions in water by ion chromatography: U.S. Geological Survey Water Resources Investigations 79-101, 30 p.
Grimes, D.J., and Marranzino, A.P., 1968, Direct-current arc and alternating-current spark emission spectrographic field methods for the semiquantitative analysis of geologic materials: U.S. Geological Survey Circular 591, 6 p.
Hubert, A.E., and Chao, T.T., 1985, Determination of gold, indium, tellurium and thallium in the same sample digest of geological materials by atomic-absorption spectroscopy and two-step solvent extraction: Talanta, v. 32, no. 7, p. 568-570.
McKown, D.M., and Knight, R.J., 1990, Determination of uranium and thorium in geologic materials by delayed neutron counting, in Arbogast, B.F., editor, Quality assurance manual for the Branch of Geochemistry, U.S. Geological Survey: U.S. Geological Survey Open-File Report 90-668, p. 146-15
Mosier, E.L., 1972, A method for semiquantitative spectrographic analysis of plant ash for use in biogeochemical and environmental studies: Applied Spectroscopy, v. 26, no. 6, p. 636-641.
Mosier, E.L., 1975, Use of emission spectroscopy for the semiquantitative analysis of trace elements in silver and native gold, in Ward, F.N., editor, New and refined methods of trace analysis useful in geochemical exploration: U.S. Geological Survey Bulletin 1408, p. 97-105.
Mosier, E.L., and Motooka, J.M., 1984, Induction coupled plasma-atomic emission spectrometry-Analysis of subsurface Cambrian carbonate rocks for major, minor, and trace elements, in Proceedings volume of international conference on Mississippi Valley-type lead-zinc deposits, Oct. 11-14: Rolla, MO, University of Missouri-Rolla, p. 155-165.
Myers, A.T., Havens, R.G., and Dunton, P.J., 1961, A spectrochemical method for the semiquantitative analysis of rocks, minerals, and ores: U.S. Geological Survey Bulletin 1084-I, p. I207-I229.
O'Leary, R.M., 1990, Determination of sulfur in geologic materials by iodometric titration, in Arbogast, B.F., editor, Quality assurance manual for the Branch of Geochemistry, U.S. Geological Survey: U.S. Geological Survey Open-File Report 90-668, p. 136-138.
O'Leary, R.M., and Meier, A.L., 1986, Analytical methods used in geochemical exploration in 1984: U.S. Geological Survey Circular 948, 48 p.
O'Leary, R.M., and Meier, A.L., 1986, Bismuth, cadmium, copper, lead, silver, and zinc, organic extraction method, in Analytical methods used in geochemical exploration, 1984: U.S. Geological Survey Circular 948,p. 11-13.
O'Leary, R.M., and Viets, J.G., 1986, Determination of antimony, bismuth, cadmium, copper, lead, molybdenum, silver, and zinc in geologic materials by atomic absorption spectrometry using a hydrochloric acid-hydrogen peroxide digestion: Atomic Spectroscopy, v. 7, no. 1, p. 4-8.
Orion Research, Inc., 1975, Orion Research Analytical Methods Guide, 7th edition: Cambridge, MA, 20 p.
Perkin-Elmer Corporation, 1976, Analytical methods for atomic absorption spectrophotometry: Norwalk, CT, Perkin-Elmer Corp., 586 p.
Perkin-Elmer Corporation, 1977, Analytical methods for atomic absorption spectrophotometry, using the HGA graphite furnace: Norwalk, CT, Perkin-Elmer Corp., 286 p.
Sutley, S.J., and Mosier, E.L., personal communication, Rb, Cs, Li, Tl by modification of optical emission spectroscopy method of Grimes and Marranzino, 1968
Thompson, C.E., Nakagawa, H.M., and VanSickle, G.H., 1968, Rapid analysis for gold in geologic materials: U.S. Geological Survey Professional Paper 600-B, p. B130-B132.
Vaughn, W.W., and McCarthy, J.H., Jr., 1964, An instrumental technique for the determination of submicrogram concentrations of mercury in soils, rocks, and gas: U.S. Geological Survey Professional Paper 501-D, p. D123-D127.
Viets, J.G., 1978, Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylyl methyl ammonium chloride: Analytical Chemistry, v. 50, no. 8, p. 1097-1101.
Viets, J.G., Clark, J.R., and Campbell, W.L., 1984, A rapid, partial leach and organic separation for the sensitive determination of Ag, Bi, Cd, Cu, Mo, Pb, Sb, and Zn in surface geologic materials by flame atomic absorption: Journal of Geochemical Exploration, v. 20, p. 355-366.
Viets, J.G., O'Leary, R.M., and Clark, J.R., 1984, Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry: The Analyst, v. 109, p. 1589-1592.
Ward, F.N., Lakin, H.W., Canney, F.C., and others, 1963, Analytical methods used in geochemical exploration by the U.S. Geological Survey: U.S. Geological Survey Bulletin 1152, 100 p.
Ward, F.N., Nakagawa, H.M., VanSickle, G.H., and Harms, T.F., 1969, Atomic absorption methods useful in geochemical exploration: U.S. Geological Survey Bulletin 1289, 45 p.
Watterson, J.R., 1976, Determination of tellurium and gold in rocks to 1 part per billion: U.S. Geological Survey Open-File Report 76-531, 3 p.