California

Past Producer in Alaska, United States with commodities Gold, Silver, Molybdenum, Antimony, Tungsten

Geologic information

Identification information

Deposit ID 10308931
MRDS ID D002568
Record type Site
Current site name California
Alternate or previous names Connolly and Jensen (or Jannsen)
Related records 10009527

Geographic coordinates

Geographic coordinates: -165.4524, 64.76909 (WGS84)
Relative position The California mine is in the headwaters of Goldbottom Creek. The main workings are in and near a west-flowing unnamed tributary at the end of the jeep trail at the north end of the Snake River road. This tributary was called Henry Gulch by Cathcart (1922, p. 253). The mine is on the boundary between section 25, T. 8 S., R. 34 W., and section 30, T. 8 S., R. 33 W., Kateel River Meridian. The mine is located within about 500 feet of the coordinates. It is locality 3 of Hummel (1962 [MF 248]) and locality 22 of Cobb (1972 [MF 46], 1978 [OFR 78-93]).
(click for info)

Geographic areas

Country State
United States Alaska

Commodities

Commodity Importance
Gold Primary
Silver Secondary
Molybdenum Secondary
Antimony Secondary
Tungsten Secondary

Materials information

Materials Type of material
Arsenopyrite Ore
Gold Ore
Molybdenite Ore
Scheelite Ore
Stibnite Ore
Quartz Gangue

Alteration

  • Extensive iron-staining of the host schist reflects oxidized pyrite or arsenopyrite.

Mineral occurrence model information

Model code 273
USGS model code 36a
Deposit model name Low-sulfide Au-quartz vein
Mark3 model number 27

Nearby scientific data

(1) -165.4524, 64.76909

Comments on the geologic information

  • Geologic Description = The California vein was discovered and developed before 1908 (Smith, 1908; Chapin, 1914 [B 592-L, p. 397-407]; Mertie, 1918 [B 451-458]). It is localized in a subsidiary shear zone to a north- to northeast-striking regional fault. The lode is exposed in shallow cuts in a west-draining side canyon to upper Goldbottom Creek. It consists of contorted, sheared, and slickensided schist and quartz masses as much as 3 feet across in a zone that strikes about N 10 W and dips 80 to 85 degrees east. The quartz masses reportedly assayed as much as about 2.5 ounces of gold per ton, but only about 0.4 or 0.5 ounce of gold per ton were recovered by processing. Mr. Jensen, an owner at one time, retained specimens from the California lode of very rich gold ore (Pearse Walsh, oral communication, 1995). Small amounts of pyrite, arsenopyrite, and stibnite accompany the gold, and some molybdenun and tungsten values have been reported (Mertie, 1918 [B 662-I, p. 451-458]; Wedow and others, 1952, p. 35). Higher grade ore may be confined to lenticular ladder zones within the major shear zone. The California lode was developed by a 70-foot decline that was reported to be in vein material to a depth of 33 feet. The ore was processed by a jaw crusher and stamp mill that may not have crushed ore fine enough to liberate all the gold. Some development was reported in 1932; in 1938 about 100 feet of drift was driven, and some ore was milled (Smith, 1934 [B 857-A]; 1939). Kennecott Exploration Company explored the property with trenches and three diamond drill holes in 1995 and found mineralized rocks with low gold grades. The structure that localizes the California lode is subsidiary to a regional fault that strikes north- to north-northeast and can be traced southerly to at least Bangor Creek. The regional fault zone is hundreds of feet wide, and rock within the zone is highly contorted, graphitic mica schist (C.C. Hawley, written communication, 1995). The fault probably continues to the north-northeast into lower Fred Creek and the Stewart River valley, where it is covered by alluvium. South-southwest of the California lode, massive quartz boulders as much as several feet across occur as surface float along the fault as far as Goldbottom Creek. In addition, highly graphitic quartz veins, which resemble the main lode, occur in an east-draining side canyon to Goldbottom Creek about 1,200 feet southwest of the main California incline. At this point, the main, north- to north-northeast-trending shear zone is about 1,000 feet across. Gold-bearing veins, such as the California lode, are possibly ladder structures within the main shear zone. Hummel (1962 [MF 248]), Sainsbury, Hummel, and Hudson (1972), and Bundtzen and others (1994) mapped the major Penny River fault of north-east strike about one-half mile west of the California lode. On the basis of mapping by one of the compiler's (C.C. Hawley), the fault exposed at the California lode is a major
  • Geologic Description = branch of the Penny River fault ,or it is the main Penny River fault and the fault mapped by others is a subsidiary structure. About 250 feet east of the main California decline, non-contorted quartz-mica schist is overlain by the main marble unit of the Mount Distin area. This is the massive marble unit of Bundtzen and others (1994); it may have a Paleozoic protolith, but most of the metasedimentary rocks in this area are part of the Nome Group derived from Proterozoic to early Paleozoic protoliths (Till and Dumoulin, 1994). At this location, the marble is folded into an open, north-trending syncline at a high angle to the main, east-west Mount Distin syncline. The Nome Group underwent regional blueschist facies metamorphism in the Late Jurassic or Early Cretaceous (Sainsbury, Coleman and Kachadoorian, 1970; Forbes and others, 1984; Thurston, 1985; Armstrong and others, 1986; Hannula and McWilliams, 1995). The blueschist facies rocks were recrystallized to greenschist facies or higher metamorphic grades in conjunction with regional extension, crustal melting, and magmatism in the mid-Cretaceous (Hudson and Arth, 1983; Miller and Hudson, 1991; Miller and others, 1992; Dumitru and others, 1995; Hannula and others, 1995; Hudson, 1994; Amato and others, 1994; Amato and Wright, 1997, 1998). Lode gold mineralization on Seward Peninsula is mostly related to the higher temperature metamorphism in the mid-Cretaceous (Apodoca, 1994; Ford, 1993 [thesis]; Ford and Snee, 1996; Goldfarb and others, 1997).
  • Age = Mid-Cretaceous; structures controlling deposits post-date regional metamorphism - mineralization could be similar in age to other lode gold deposits of Seward Peninsula.

Economic information

Economic information about the deposit and operations

Development status Past Producer
Commodity type Metallic

Comments on exploration

  • Status = Probably inactive

Mining district

District name Nome

Comments on the production information

  • Production Notes = Small production in early 1900's, also some probably about 1937-38.

Comments on the workings information

  • Workings / Exploration = The California lode was developed by a 70-foot decline that was reported to be in vein material to a depth of 33 feet. There are shallow pits, including a pit on the marble-schist contact about 250 feet east of the California incline. This pit has abundant bluish quartz. Another pit is about 1,200 feet southwest of the incline in a side canyon on the west side of Goldbottom Creek. The ore was processed by a jaw crusher and stamp mill that may not have crushed ore fine enough to liberate all the gold. Some development was reported in 1932; in 1938 about 100 feet of drift was driven and some ore was milled (Smith, 1934 [B 857-A], 1939 [B 917-A]). Kennecott Exploration Company explored the property with trenches and three diamond drill holes in 1995 and found mineralized rocks with low gold grades.

Reference information

Links to other databases

Agency Database name Acronym Record ID Notes
USGS Alaska Resource Data File ARDF NM062
USGS Mineral Resources Data System MRDS A012799
USGS Mineral Resources Data System MRDS D002568

Bibliographic references

  • Deposit

    Smith, P.S., 1908, Investigations of mineral deposits of Seward Peninsula: U.S. Geological Survey Bulletin 345, p. 206-250.

  • Deposit

    Chapin, Theodore, 1914, Placer mining on Seward Peninsula: U.S. Geological Survey Bulletin 592-L, p. 385-395.

  • Deposit

    Cathcart, S.H., 1922, Metalliferous lodes in southern Seward Peninsula: U.S. Geological Survey Bulletin 722, p. 163-261.

  • Deposit

    Smith, P.S., 1934, Mineral industry of Alaska in 1932: U.S. Geological Survey Bulletin 857-A, p. 1-91.

  • Deposit

    Smith, P.S., 1939, Mineral industry of Alaska in 1938: U.S. Geological Survey Bulletin 917-A, p. 1-113.

  • Deposit

    Hummel, C.L., 1962, Preliminary geologic map of the Nome D-1 quadrangle, Seward Peninsula, Alaska: U.S. Geological Survey Miscellaneous Field Studies Map MF-248, 1 sheet, scale 1:63,360.

  • Deposit

    Sainsbury, C.L., Coleman, R.G., and Kachadoorian, Reuben, 1970, Blueschist and related greenschist faces rocks of the Seward Peninsula, Alaska, in Geological Survey research 1970: U.S. Geological Survey Professional Paper 700-B, p. B33-B42.

  • Deposit

    Cobb, E.H., 1972, Metallic mineral resources map of the Nome quadrangle, Alaska: U.S. Geological Survey Miscellaneous Field Studies Map MF-463, 2 sheets, scale 1:250,000.

  • Deposit

    Sainsbury, C.L., Hummel, C.L., and Hudson, Travis, 1972, Reconnaissance geologic map of the Nome quadrangle, Seward Peninsula, Alaska: U.S. Geological Survey Open-File Report 72-326, 28 p., 1 sheet, scale 1:250,000.

  • Deposit

    Cobb, E.H., 1978, Summary of references to mineral occurrences (other than mineral fuels and construction materials) in the Nome quadrangle, Alaska: U.S. Geological Survey Open-File report 78-93, 213 p.

  • Deposit

    Hudson, T.L., and Arth, J. G., 1983, Tin-granites of Seward Peninsula, Alaska: Geological Society of America Bulletin, v. 94, p. 768-790.

  • Deposit

    Forbes, R.B., Evans, B.W., and Thurston, S.P., 1984, Regional progressive high-pressure metamorphism, Seward Peninsula, Alaska: Journal of Metamorphic Geology, v. 2, p. 43-54.

  • Deposit

    Thurston, S.P., 1985, Structure, petrology, and metamorphic history of the Nome Group blueschist terrane, Salmon Lake area, Seward Peninsula, Alaska: Geological Society of America Bulletin, v. 96, p. 600-617.

  • Deposit

    Armstrong, R.L., Harakal, J.E., Forbes, R.B., Evans, B.W., and Thurston, S.P., 1986, Rb-Sr and K-Ar study of metamorphic rocks of the Seward Peninsula and southern Brooks Range, Alaska, in Evans, B.W., and Brown, E.H., eds., Blueschists and eclogites: Geological Society of America Memoir 164, p. 184-203.

  • Deposit

    Miller, E.L., and Hudson, T.L., 1991, Mid-Cretaceous extensional fragmentation of a Jurassic-Early Cretaceous compressional orogen, Alaska: Tectonics, v. 10, p. 781-796.

  • Deposit

    Miller, E.L., Calvert, A.T., and Little, T.A., 1992, Strain-collapsed metamorphic isograds in a sillimanite gneiss dome, Seward Peninsula, Alaska: Geology, v. 20, p. 487-490.

  • Deposit

    Ford, R.C., 1993, Geology, geochemistry, and age of gold lodes at Bluff and Mt. Distin, Seward Peninsula, Alaska: Golden, Colorado School of Mines, Ph.D. dissertation, 302 p.

  • Deposit

    Apodoca, L. E., 1994, Genesis of lode gold deposits of the Rock Creek area, Nome mining district, Seward Peninsula, Alaska: Boulder, Colorado, University of Colorado, Ph.D. dissertation, 208 p.

  • Deposit

    Hudson, T.L. 1994, Crustal melting events in Alaska, in Plafker, G., and Berg, H. C., eds., The Geology of Alaska: Boulder, Colorado, Geological Society of America, The Geology of North America, v. G-1, p. 657-670.

  • Deposit

    Till, A.B., and Dumoulin, J.A, 1994, Geology of Seward Peninsula and St. Lawrence Island, in Plafker, G., and Berg, H.C., eds., The Geology of Alaska: Geological Society of America, The Geology of North America, DNAG, v. G-1, p. 141-152.

  • Deposit

    Amato, J.M., Wright, J.E., Gans, P.B., and Miller, E.L., 1994, Magmatically induced metamorphism and deformation in the Kigluaik gneiss dome, Seward Peninsula, Alaska: Tectonics, v. 13, p. 515-527.

  • Deposit

    Dumitru, T.A., Miller, E.L., O'Sullivan, P.B., Amato, J.M., Hannula, K.A., Calvert, A.T., and Gans, P.B., 1995, Cretaceous to Recent extension in the Bering Strait region, Alaska: Tectonics, v. 14, p. 549-563.

  • Deposit

    Hannula, K.A., Miller, E.L., Dumitru, T.A., Lee, Jeffrey, and Rubin, C.M., 1995, Structural and metamorphic relations in the southwest Seward Peninsula, Alaska; Crustal extension and the unroofing of blueschists: Geological Society of America Bulletin, v. 107, p. 536-553.

  • Deposit

    Hannula, K.A., and McWilliams, M.O., 1995, Reconsideration of the age of blueschist facies metamorphism on the Seward Peninusla, Alaska, based on phengite 40Ar/39Ar results: Journal of Metamorphic Geology, v. 13, p. 125-139.

  • Deposit

    Ford, R.C., and Snee, L.W., 1996, 40Ar/39Ar thermochronology of white mica from the Nome district, Alaska: The first ages of lode sources to placer gold deposits in the Seward Peninsula: Economic Geology, v. 91, p. 213-220.

  • Deposit

    Goldfarb, R.J., Miller, L.D., Leach, D.L., and Snee, L.W, 1997, Gold deposits in metamorphic rocks in Alaska, in Goldfarb, R.J., and Miller, L.D., eds., Mineral deposits of Alaska: Economic Geology Monograph 9, 482 p.

  • Deposit

    Amato, J.M., and Wright, J.E., 1997, Potassic mafic magmatism in the Kigluaik gneiss dome, northern Alaska -- A geochemical study of arc magmatism in an extensional tectonic setting: Journal of Geophysical Research, v. B102, no. 4, p. 8065-8084.

  • Deposit

    Amato, J.M., and Wright, J.E., 1998, Geochronologic investigations of magmatism and metamorphism within the Kigluaik Mountains gneiss dome, Seward Peninsula, Alaska, in Clough, J.G., and Larson, Frank, eds., Short Notes on Alaskan Geology 1997: Alaska Division of Geological and Geophysical Surveys Professional Report 118a, p. 1-21.

  • Deposit

    Bundtzen, T.K., Reger, R.D., Laird, G.M., Pinney, D.S., Clautice, K.H., Liss, S.A., and Cruse, G.R., 1994, Progress report on the geology and mineral resources of the Nome mining district: Alaska Division of Geological and Geophysical Surveys, Public Data-File 94-39, 21 p., 2 sheets, scale 1:63,360.

  • Deposit

    Chapin, Theodore, 1914, Lode development on Seward Peninsula: U.S. Geological Survey Bulletin 592-L, p. 397-407.

Comments on the references

  • Primary Reference = Mertie, 1918

General comments

Subject category Comment text
Deposit Model Name = Low sulfide Au-quartz veins (Cox and Singer, 1986; model 36a).
Deposit Other Comments = Complex target within major shear zone.

Reporter information

Type Date Name Affiliation Comment
Reporter 22-OCT-99 Hawley, C.C. and Hudson, Travis L. Hawley Resource Group